Squaring in cyclotomic subgroups

We propose new squaring formulae for cyclotomic subgroups of the multiplicative group of certain finite fields. Our formulae use a compressed representation of elements having the property that decompression can be performed at a very low cost. The squaring formulae lead to new exponentiation algorithms in cyclotomic subgroups which outperform the fastest previouslyknown exponentiation algorithms when the exponent has low Hamming weight. Our algorithms can be adapted to accelerate the final exponentiation step of pairing computations.

[1]  Koray Karabina,et al.  Torus-Based Compression by Factor 4 and 6 , 2012, IEEE Transactions on Information Theory.

[2]  David P. Woodruff,et al.  Asymptotically Optimal Communication for Torus-Based Cryptography , 2004, CRYPTO.

[3]  Alfred Menezes,et al.  Pairing-Based Cryptography at High Security Levels , 2005, IMACC.

[4]  Martijn Stam,et al.  A Comparison of CEILIDH and XTR , 2004, ANTS.

[5]  Arjen K. Lenstra,et al.  The XTR Public Key System , 2000, CRYPTO.

[6]  Arjen K. Lenstra,et al.  Efficient Subgroup Exponentiation in Quadratic and Sixth Degree Extensions , 2002, CHES.

[7]  Patrick Longa,et al.  Faster Explicit Formulas for Computing Pairings over Ordinary Curves , 2011, EUROCRYPT.

[8]  Francisco Rodríguez-Henríquez,et al.  High-Speed Software Implementation of the Optimal Ate Pairing over Barreto-Naehrig Curves , 2010, Pairing.

[9]  Masaaki Shirase,et al.  A More Compact Representation of XTR Cryptosystem , 2008, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[10]  P. L. Montgomery Speeding the Pollard and elliptic curve methods of factorization , 1987 .

[11]  Alice Silverberg,et al.  Torus-Based Cryptography , 2003, CRYPTO.

[12]  Arjen K. Lenstra,et al.  Speeding Up XTR , 2001, ASIACRYPT.

[13]  M. Scott Implementing cryptographic pairings , 2007 .

[14]  Koray Karabina Double-Exponentiation in Factor-4 Groups and Its Applications , 2009, IMACC.

[15]  Nigel P. Smart,et al.  High Security Pairing-Based Cryptography Revisited , 2006, ANTS.

[16]  David G. Harris,et al.  Simultaneous field divisions: an extension of Montgomery's trick , 2008, IACR Cryptol. ePrint Arch..

[17]  Koray Karabina FACTOR-4 AND 6 COMPRESSION OF , 2009 .

[18]  Paulo S. L. M. Barreto,et al.  Pairing-Friendly Elliptic Curves of Prime Order , 2005, Selected Areas in Cryptography.

[19]  David P. Woodruff,et al.  Practical Cryptography in High Dimensional Tori , 2005, EUROCRYPT.

[20]  Michael Scott,et al.  Constructing Tower Extensions of Finite Fields for Implementation of Pairing-Based Cryptography , 2010, WAIFI.

[21]  Andries E. Brouwer,et al.  Doing More with Fewer Bits , 1999, ASIACRYPT.

[22]  Guang Gong,et al.  Public-key cryptosystems based on cubic finite field extensions , 1999, IEEE Trans. Inf. Theory.

[23]  Chae Hoon Lim,et al.  Fast Implementation of Elliptic Curve Arithmetic in GF(pn) , 2000, Public Key Cryptography.

[24]  Michael Scott,et al.  Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions , 2009, IACR Cryptol. ePrint Arch..

[25]  Michael Scott,et al.  A Taxonomy of Pairing-Friendly Elliptic Curves , 2010, Journal of Cryptology.

[26]  Guang Gong,et al.  Analogues to the Gong-Harn and XTR Cryptosystems , .

[27]  M. Anwar Hasan,et al.  Asymmetric Squaring Formulae , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).

[28]  Yasuyuki Nogami,et al.  Integer Variable chi-Based Ate Pairing , 2008, Pairing.

[29]  Alice Silverberg,et al.  Compression in Finite Fields and Torus-Based Cryptography , 2008, SIAM J. Comput..

[30]  Chris J. Skinner,et al.  A Public-Key Cryptosystem and a Digital Signature System BAsed on the Lucas Function Analogue to Discrete Logarithms , 1994, ASIACRYPT.

[31]  Koray Karabina,et al.  Factor-4 and 6 compression of cyclotomic subgroups of and , 2010, J. Math. Cryptol..