Thin boron nitride nanotubes with exceptionally high strength and toughness.

Bending manipulation and direct force measurements of ultrathin boron nitride nanotubes (BNNTs) were performed inside a transmission electron microscope. Our results demonstrate an obvious transition in mechanics of BNNTs when the external diameters of nanotubes are in the range of 10 nm or less. During in situ transmission electron microscopy bending tests, characteristic "hollow" ripple-like structures formed in the bent ultrathin BNNTs with diameters of sub-10 nm. This peculiar buckling/bending mode makes the ultrathin BNNTs hold very high post-buckling loads which significantly exceed their initial buckling forces. Exceptional compressive/bending strength as high as ∼1210 MPa was observed. Moreover, the analysis of reversible bending force curves of such ultrathin nanotubes indicates that they may store/adsorb strain energy at a density of ~400 × 10(6) J m(-3). Such nanotubes are thus very promising for strengthening and toughening of structural ceramics and may find potential applications as effective energy-absorbing materials like armor.

[1]  Dmitri Golberg,et al.  Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons , 2013, Nanoscale Research Letters.

[2]  K. S. Nagapriya,et al.  Ultrahigh torsional stiffness and strength of boron nitride nanotubes. , 2012, Nano letters.

[3]  Chang Liu,et al.  Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. , 2012, Nano letters.

[4]  H. Zeng,et al.  Nanomaterial Engineering and Property Studies in a Transmission Electron Microscope , 2012, Advanced materials.

[5]  Zhi Xu,et al.  Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes , 2011, Nanotechnology.

[6]  Z. Iqbal,et al.  One-step CVD synthesis of a boron nitride nanotube–iron composite , 2011 .

[7]  C. Zhi,et al.  Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm , 2011, Nanotechnology.

[8]  Y. Bando,et al.  Tensile Tests on Individual Multi‐Walled Boron Nitride Nanotubes , 2010, Advanced materials.

[9]  A. Glushenkov,et al.  Single deep ultraviolet light emission from boron nitride nanotube film , 2010 .

[10]  H. Ghassemi,et al.  Real-time fracture detection of individual boron nitride nanotubes in severe cyclic deformation processes , 2010 .

[11]  Timothy F. Havel,et al.  Modeling mechanical energy storage in springs based on carbon nanotubes , 2009, Nanotechnology.

[12]  C. Zhi,et al.  Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature , 2009, Nanotechnology.

[13]  Thierry Baron,et al.  Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. , 2009, Nano letters.

[14]  M. Arroyo,et al.  Rippling and a phase-transforming mesoscopic model for multiwalled carbon nanotubes , 2008 .

[15]  Dmitri Golberg,et al.  Boron Nitride Nanotubes , 2007 .

[16]  Dmitri Golberg,et al.  Direct Force Measurements and Kinking under Elastic Deformation of Individual Multiwalled Boron Nitride Nanotubes , 2007 .

[17]  C. Zhi,et al.  Multi-walled boron nitride nanotubes composed of diverse cross-section and helix type shells , 2007 .

[18]  Jonathan N. Coleman,et al.  Mechanical Reinforcement of Polymers Using Carbon Nanotubes , 2006 .

[19]  R. Batra,et al.  Buckling of multiwalled carbon nanotubes under axial compression , 2006 .

[20]  J. Zuo,et al.  Double-helix structure in multiwall boron nitride nanotubes. , 2005, Acta crystallographica. Section A, Foundations of crystallography.

[21]  C. Zhi,et al.  Phonon characteristics and cathodolumininescence of boron nitride nanotubes , 2005 .

[22]  Abhijit P. Suryavanshi,et al.  Elastic modulus and resonance behavior of boron nitride nanotubes , 2004 .

[23]  Y. Bando,et al.  A novel precursor for synthesis of pure boron nitride nanotubes. , 2002, Chemical communications.

[24]  Boris I. Yakobson,et al.  C2F, BN, AND C NANOSHELL ELASTICITY FROM AB INITIO COMPUTATIONS , 2001 .

[25]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical review letters.

[26]  Crespi,et al.  Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes , 2000, Physical review letters.

[27]  Zettl,et al.  Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes , 2000, Science.

[28]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[29]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[30]  P. Ajayan,et al.  Size Effects in Carbon Nanotubes , 1998, cond-mat/9811046.

[31]  H. Wagner,et al.  Buckling and Collapse of Embedded Carbon Nanotubes , 1998 .

[32]  Takuya Hayashi,et al.  In-situ observed deformation of carbon nanotubes , 1998 .

[33]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998, cond-mat/9804226.

[34]  Alex Zettl,et al.  Measurement of the Elastic Modulus of a Multi-Wall Boron Nitride Nanotube , 1998 .

[35]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[36]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[37]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[38]  Steven G. Louie,et al.  Boron Nitride Nanotubes , 1995, Science.

[39]  S. Louie,et al.  Stability and Band Gap Constancy of Boron Nitride Nanotubes , 1994 .

[40]  Cohen,et al.  Theory of graphitic boron nitride nanotubes. , 1994, Physical review. B, Condensed matter.

[41]  George J. Simitses,et al.  Buckling and Postbuckling of Imperfect Cylindrical Shells: A Review , 1986 .

[42]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.