Software cost estimation using fuzzy logic

Effective Software cost estimation is one of the most challenging and important activities in Software development. The software industry does not estimate projects well. In this paper we have represented size in KLOC as a Fuzzy number. A new model is presented using fuzzy logic to estimate effort required in software development. We use MATLAB for tuning the parameters of famous COCOMO model. The performance of model is evaluated on published software projects data. Comparison of results from our model with existing prevalent models is done.

[1]  Hui Zeng,et al.  A neural network approach for software defects fix effort estimation , 2004, IASTED Conf. on Software Engineering and Applications.

[2]  Roger S. Pressman,et al.  Software Engineering: A Practitioner's Approach , 1982 .

[3]  B. Boehm,et al.  Modeling Software Defect Introduction and Removal : COQUALMO ( COnstructive QUALity MOdel ) , 1999 .

[4]  Barry Boehm,et al.  Modeling Software Defect Introduction , 1997 .

[5]  José Galindo,et al.  Handbook of Research on Fuzzy Information Processing in Databases , 2008, Handbook of Research on Fuzzy Information Processing in Databases.

[6]  Javier Crespo,et al.  On Aggregating Second-Level Software Estimation Cost Drivers: A Usability Cost Estimation Case Study , 2004 .

[7]  W. R. Howard Software Measurement and Estimation: A Practical Approach , 2007 .

[8]  Victor R. Basili,et al.  A meta-model for software development resource expenditures , 1981, ICSE '81.

[9]  Alaa F. Sheta,et al.  Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects , 2006 .

[10]  Barry W. Boehm,et al.  Bayesian Analysis of Empirical Software Engineering Cost Models , 1999, IEEE Trans. Software Eng..

[11]  Tim Menzies,et al.  Validation methods for calibrating software effort models , 2005, ICSE.

[12]  Barry W. Boehm,et al.  Cost models for future software life cycle processes: COCOMO 2.0 , 1995, Ann. Softw. Eng..

[13]  Chris F. Kemerer,et al.  An empirical validation of software cost estimation models , 1987, CACM.

[14]  Harish Mittal,et al.  Software maintainability assessment based on fuzzy logic technique , 2009, SOEN.

[15]  David A. Gustafson Schaum’s Outline Of Theory And Problems Of Software Engineering , 2002 .

[16]  Witold Pedrycz,et al.  Software cost estimation with fuzzy models , 2000, SIAP.

[17]  Darren Dalcher,et al.  COCOMO-Based Effort Estimation for Iterative and Incremental Software Development , 2004, Software Quality Journal.

[18]  H. Sedehi,et al.  Software Cost Estimation: an experimental study of model performances , 1996 .

[19]  Barry W. Boehm,et al.  Calibrating the COCOMO II Post-Architecture model , 1998, Proceedings of the 20th International Conference on Software Engineering.

[20]  Emilia Mendes,et al.  Web Cost Estimation: An Introduction , 2005 .

[21]  Barry Boehm,et al.  Calibrating Software Cost Models Using Bayesian Analysis , 1998 .

[22]  Satish Kumar,et al.  Fuzzy systems and neural networks in software engineering project management , 1994, Applied Intelligence.

[23]  Alain Abran,et al.  COCOMO cost model using fuzzy logic , 2000 .

[24]  Gavin R. Finnie,et al.  Estimating software development effort with connectionist models , 1997, Inf. Softw. Technol..

[25]  P. W. Garratt,et al.  A Neurofuzzy cost estimator , 1999 .