Unit Dependency Graph and Its Application to Arithmetic Word Problem Solving

Math word problems provide a natural abstraction to a range of natural language understanding problems that involve reasoning about quantities, such as interpreting election results, news about casualties, and the financial section of a newspaper. Units associated with the quantities often provide information that is essential to support this reasoning. This paper proposes a principled way to capture and reason about units and shows how it can benefit an arithmetic word problem solver. This paper presents the concept of Unit Dependency Graphs (UDGs), which provides a compact representation of the dependencies between units of numbers mentioned in a given problem. Inducing the UDG alleviates the brittleness of the unit extraction system and allows for a natural way to leverage domain knowledge about unit compatibility, for word problem solving. We introduce a decomposed model for inducing UDGs with minimal additional annotations, and use it to augment the expressions used in the arithmetic word problem solver of (Roy and Roth 2015) via a constrained inference framework. We show that introduction of UDGs reduces the error of the solver by over 10 %, surpassing all existing systems for solving arithmetic word problems. In addition, it also makes the system more robust to adaptation to new vocabulary and equation forms .