Parallel Time Integration with Multigrid Reduction for a Compressible Fluid Dynamics Application

We describe our eorts to speed up the computational uid dynamics (CFD) application code Strand2D via the parallel multigrid reduction in time (MGRIT) software library XBraid. The need for parallel-in-time approaches, such as MGRIT, is being driven by current trends in computer architectures where performance improvements are coming from greater parallelism, not faster clock speeds. This leads to a bottleneck for sequential time integration methods, such as those used in Strand2D, because they lack parallelism in the time dimension. Thus, the ability to apply parallelin-time approaches to CFD codes is of interest, and MGRIT is particularly well suited given its non-intrusiveness, which only requires users to wrap existing time stepping codes in the XBraid framework. The contributions of this paper are the description of the nonlinear version of MGRIT and the corresponding software implementation XBraid. We also discuss the steps needed to use XBraid with Strand2D and present the corresponding results for unsteady laminar ow over a cylinder. These results demonstrate a signicant speedup when sucient

[1]  Pierluigi Amodio,et al.  Parallel solution in time of ODEs: some achievements and perspectives , 2009 .

[2]  David E. Worley A time-stepping algorithm for parallel computers , 1990 .

[3]  Boris Diskin,et al.  Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Inviscid Fluxes , 2011 .

[4]  Xiaoying Dai,et al.  Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems , 2012, SIAM J. Sci. Comput..

[5]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[6]  U. Trottenberg,et al.  A note on MGR methods , 1983 .

[7]  Martin J. Gander,et al.  PARAEXP: A Parallel Integrator for Linear Initial-Value Problems , 2013, SIAM J. Sci. Comput..

[8]  Michael L. Minion,et al.  Parareal and Spectral Deferred Corrections , 2008 .

[9]  Martin J. Gander,et al.  Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..

[10]  Jürg Nievergelt,et al.  Parallel methods for integrating ordinary differential equations , 1964, CACM.

[11]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[12]  Izaskun Garrido Hernandez,et al.  Convergent iterative schemes for time parallelization , 2006, Math. Comput..

[13]  Boris Diskin,et al.  Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations , 2013 .

[14]  V. Guinot Approximate Riemann Solvers , 2010 .

[15]  Rolf Krause,et al.  A massively space-time parallel N-body solver , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[16]  Andrew M. Wissink,et al.  Efficient Solution Methods for Strand Grid Applications , 2012 .

[17]  Forrester T. Johnson,et al.  Modi cations and Clari cations for the Implementation of the Spalart-Allmaras Turbulence Model , 2011 .

[18]  Robert D. Falgout,et al.  Parallel time integration with multigrid , 2013, SIAM J. Sci. Comput..

[19]  Graham Horton,et al.  A Space-Time Multigrid Method for Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..

[20]  Thomas A. Manteuffel,et al.  Least-Squares Finite Element Methods and Algebraic Multigrid Solvers for Linear Hyperbolic PDEs , 2004, SIAM J. Sci. Comput..

[21]  Achi Brandt,et al.  Fast Multigrid Solution of the Advection Problem with Closed Characteristics , 1998, SIAM J. Sci. Comput..

[22]  Achi Brandt,et al.  Multilevel Adaptive Computations in Fluid Dynamics , 1980 .

[23]  A. Katz,et al.  Discretization Methodology for High Aspect Ratio Prismatic Grids , 2011 .

[24]  C. W. Gear,et al.  Parallel methods for ordinary differential equations , 1988 .

[25]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[26]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[27]  Ralf Knirsch,et al.  A time-parallel multigrid-extrapolation method for parabolic partial differential equations , 1992, Parallel Comput..

[28]  Colin B. Macdonald,et al.  Parallel High-Order Integrators , 2010, SIAM J. Sci. Comput..

[29]  Aaron Katz,et al.  High-order flux correction/finite difference schemes for strand grids , 2015, J. Comput. Phys..

[30]  Michael L. Minion,et al.  A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD , 2010 .

[31]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[32]  Kenneth R. Jackson,et al.  A survey of parallel numerical methods for initial value problems for ordinary differential equations , 1991 .

[33]  Rohit Jain,et al.  Capability Enhancements in Version 3 of the Helios High-Fidelity Rotorcraft Simulation Code , 2012 .

[34]  David E Womble A Time-Stepping Algorithm for Parallel Computers , 1990, SIAM J. Sci. Comput..

[35]  Yvon Maday,et al.  The parareal in time algorithm , 2008 .

[36]  David J. Evans,et al.  A parallel Runge-Kutta integration method , 1989, Parallel Comput..