Copper homeostasis in Enterococcus hirae.

[1]  Shin Lin,et al.  Metal ion chaperone function of the soluble Cu(I) receptor Atx1. , 1997, Science.

[2]  S. Opella,et al.  Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. , 1997, Biochemistry.

[3]  D. Winge,et al.  Copper-mediated repression of the activation domain in the yeast Mac1p transcription factor. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Solioz,et al.  CopY Is a Copper-inducible Repressor of the Enterococcus hirae Copper ATPases* , 1997, The Journal of Biological Chemistry.

[5]  R. Klausner,et al.  Identification and Functional Expression of HAH1, a Novel Human Gene Involved in Copper Homeostasis* , 1997, The Journal of Biological Chemistry.

[6]  C. Vulpe,et al.  CPx-type ATPases: a class of P-type ATPases that pump heavy metals. , 1996, Trends in biochemical sciences.

[7]  D. Glerum,et al.  Characterization of COX17, a Yeast Gene Involved in Copper Metabolism and Assembly of Cytochrome Oxidase* , 1996, The Journal of Biological Chemistry.

[8]  J. Møller,et al.  Structural organization, ion transport, and energy transduction of P-type ATPases. , 1996, Biochimica et biophysica acta.

[9]  M C Peitsch,et al.  ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. , 1996, Biochemical Society transactions.

[10]  J. Kaplan,et al.  Organization of P-type ATPases: significance of structural diversity. , 1995, Biochemistry.

[11]  V. Culotta,et al.  The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Odermatt,et al.  Copper and Silver Transport by CopB-ATPase in Membrane Vesicles of Enterococcus hirae(*) , 1995, The Journal of Biological Chemistry.

[13]  A. Odermatt,et al.  Two trans-Acting Metalloregulatory Proteins Controlling Expression of the Copper-ATPases of Enterococcus hirae* , 1995, The Journal of Biological Chemistry.

[14]  A. Odermatt,et al.  Induction of the putative copper ATPases, CopA and CopB, of Enterococcus hirae by Ag+ and Cu2+, and Ag+ extrusion by CopB. , 1994, Biochemical and biophysical research communications.

[15]  J. Jungmann,et al.  MAC1, a nuclear regulatory protein related to Cu‐dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. , 1993, The EMBO journal.

[16]  K. Hiramatsu,et al.  Distribution of mec regulator genes in methicillin-resistant Staphylococcus clinical strains , 1993, Antimicrobial Agents and Chemotherapy.

[17]  C. Hackbarth,et al.  blaI and blaR1 regulate beta-lactamase and PBP 2a production in methicillin-resistant Staphylococcus aureus , 1993, Antimicrobial Agents and Chemotherapy.

[18]  V. Wittman,et al.  Regulation of the penicillinase genes of Bacillus licheniformis: interaction of the pen repressor with its operators , 1988, Journal of bacteriology.

[19]  T. Imanaka,et al.  Nucleotide sequence of the penicillinase repressor gene penI of Bacillus licheniformis and regulation of penP and penI by the repressor , 1986, Journal of bacteriology.

[20]  S. Packman,et al.  Cellular copper transport. , 1995, Annual review of nutrition.

[21]  P. Pedersen,et al.  Ion motive ATPases. II. Energy coupling and work output , 1987 .

[22]  S. Harrison,et al.  Structure of the represser–operator complex of bacteriophage 434 , 1987, Nature.

[23]  P. Pedersen,et al.  Ion motive ATPases. I. Ubiquity, properties, and significance to cell function , 1987 .

[24]  M. T. Pope,et al.  Isopoly-vanadates, -niobates, and -tantalates , 1968 .