Detecting bifurcation values at infinity of real polynomials

We present a new approach for estimating the set of bifurcation values at infinity. This yields a significant shrinking of the number of coefficients in the recent algorithm introduced by Jelonek and Kurdyka for reaching critical values at infinity by rational arcs.

[1]  On the Łojasiewicz exponent at infinity of real polynomials , 2008 .

[2]  Laurentiu Paunescu,et al.  On the Lojasiewicz exponent at infinity for polynomial functions , 1997 .

[3]  András Némethi,et al.  On the bifurcation set of a polynomial function and Newton boundary, II , 1990 .

[4]  Zbigniew Jelonek,et al.  On asymptotic critical values of a complex polynomial , 2003 .

[5]  René Thom,et al.  Ensembles et morphismes stratifiés , 1969 .

[6]  Jean-Louis Verdier,et al.  Stratifications de Whitney et théorème de Bertini-Sard , 1976 .

[7]  N. Dutertre On the topology of semi-algebraic functions on closed semi-algebraic sets , 2010, Manuscripta Mathematica.

[8]  Patrick J. Rabier,et al.  Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds , 1997 .

[9]  M. Tibar Polynomials and vanishing cycles , 2007 .

[10]  Mohab Safey El Din,et al.  Computing the global optimum of a multivariate polynomial over the reals , 2008, ISSAC '08.

[11]  A. Zaharia,et al.  Asymptotic behaviour of families of real curves , 1999 .

[12]  D. Siersma,et al.  Singularities at infinity and their vanishing cycles , 1995 .

[13]  Five Definitions of Critical Point at Infinity , 1997, alg-geom/9702019.

[14]  Bifurcation points of non-tame polynomial functions and perverse sheaves ∗ , 2014 .

[15]  M. Tibar,et al.  Invertible polynomial mappings via Newton non-degeneracy , 2013, 1303.6879.

[16]  Atypical values at infinity of a polynomial function on the real plane: an erratum, and an algorithmic criterion , 2001 .

[17]  J. Milnor Singular points of complex hypersurfaces , 1968 .

[18]  Enrique Artal Bartolo,et al.  Sur la topologie des polynômes complexes , 1998 .

[19]  John Milnor,et al.  Singular Points of Complex Hypersurfaces. (AM-61), Volume 61 , 1969 .

[20]  J. Seade On the Topology of Hypersurface Singularities , 2003 .

[21]  K. Kurdyka,et al.  SEMIALGEBRAIC SARD THEOREM FOR GENERALIZED CRITICAL VALUES , 2000 .

[22]  Zbigniew Jelonek,et al.  Reaching generalized critical values of a polynomial , 2012, 1203.0539.

[23]  Adam Parusinski,et al.  On the bifurcation set of complex polynomial with isolated singularities at infinity , 1995 .

[24]  Ha Huy Vui,et al.  Global Optimization of Polynomials Using the Truncated Tangency Variety and Sums of Squares , 2008, SIAM J. Optim..

[25]  M. Tibar On the monodromy fibration of polynomial functions with singularities at infinity , 1997 .

[26]  Masakazu Suzuki Propri\'et\'es topologiques des polyn\^omes de deux variables complexes, et automorphismes alg\'ebriques de l'espace $C^{2}$ , 1974 .

[27]  L.R.G. Dias,et al.  Regularity at infinity of real mappings and a Morse–Sard theorem , 2011, 1103.5715.