Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays

Abstract The impact of multiple time delays on the dynamics of two disc dynamos with viscous friction is studied in this paper. We consider the stability of equilibrium states for different delay values, and determine the location of relevant Hopf bifurcations using the normal form method and the center manifold theory. By performing numerical calculations and analysis, we verify the validity of our analytically obtained results. Our research results reveal a classical period-doubling route towards deterministic chaos in the studied system, and play an important role for the better understanding of the complex dynamics of two disc dynamos with viscous friction subject to multiple time delays.

[1]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[2]  Irene M. Moroz,et al.  On self-exciting coupled Faraday disk homopolar dynamos driving series motors , 1998 .

[3]  Julien Clinton Sprott,et al.  An infinite 3-D quasiperiodic lattice of chaotic attractors , 2018 .

[4]  Julien Clinton Sprott,et al.  How to Bridge Attractors and Repellors , 2017, Int. J. Bifurc. Chaos.

[5]  M. Perc Visualizing the attraction of strange attractors , 2005 .

[6]  Junjie Wei,et al.  Bifurcation analysis for Chen's system with delayed feedback and its application to control of chaos , 2004 .

[7]  Cristian Lazureanu,et al.  A Rikitake Type System with quadratic Control , 2012, Int. J. Bifurc. Chaos.

[8]  T. Bînzar,et al.  A Rikitake type system with one control , 2013 .

[9]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[10]  Edgar Knobloch,et al.  Chaos in the segmented disc dynamo , 1981 .

[11]  H. K. Moffatt A self-consistent treatment of simple dynamo systems , 1979 .

[12]  Karthikeyan Rajagopal,et al.  Synchronisation, electronic circuit implementation, and fractional-order analysis of 5D ordinary differential equations with hidden hyperchaotic attractors , 2018 .

[13]  Yi Shen,et al.  Hopf bifurcation of a predator–prey system with predator harvesting and two delays , 2013 .

[14]  Yi-You Hou,et al.  Design and implementation of EP-based PID controller for chaos synchronization of Rikitake circuit systems. , 2017, ISA transactions.

[15]  Julien Clinton Sprott,et al.  Detecting Hidden Chaotic Regions and Complex Dynamics in the Self-Exciting Homopolar Disc Dynamo , 2017, Int. J. Bifurc. Chaos.

[16]  B. Hassard,et al.  Theory and applications of Hopf bifurcation , 1981 .

[17]  J. Hale Theory of Functional Differential Equations , 1977 .

[18]  Zhouchao Wei,et al.  Hidden Attractors and Dynamical Behaviors in an Extended Rikitake System , 2015, Int. J. Bifurc. Chaos.

[19]  Julien Clinton Sprott,et al.  Infinite lattice of hyperchaotic strange attractors , 2018 .

[20]  R. Hide Structural instability of the Rikitake disk dynamo , 1995 .

[21]  Mingtian Xu Impact of nonlinearity on a homopolar oscillating-disc dynamo , 2018 .

[22]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[23]  Julien Clinton Sprott,et al.  Predicting tipping points of dynamical systems during a period-doubling route to chaos. , 2018, Chaos.

[24]  W. Steeb,et al.  The Rikitake Two-Disk Dynamo System and Domains with Periodic Orbits , 1999 .

[25]  Awadhesh Prasad,et al.  Describing chaotic attractors: Regular and perpetual points. , 2018, Chaos.

[26]  Viet-Thanh Pham,et al.  Bifurcation analysis and circuit realization for multiple-delayed Wang–Chen system with hidden chaotic attractors , 2016 .

[27]  Erivelton G. Nepomuceno,et al.  Graphical interface as a teaching aid for nonlinear dynamical systems , 2018, European Journal of Physics.

[28]  Yu Feng,et al.  Hidden attractors without equilibrium and adaptive reduced-order function projective synchronization from hyperchaotic Rikitake system , 2017 .

[29]  Matjaz Perc,et al.  A review of chaos-based firefly algorithms: Perspectives and research challenges , 2015, Appl. Math. Comput..

[30]  Qigui Yang,et al.  Dynamics of a new Lorenz-like chaotic system , 2010 .

[31]  J. Ginoux,et al.  Is type 1 diabetes a chaotic phenomenon? , 2018, Chaos, Solitons & Fractals.

[32]  A. E. Cook Two disc dynamos with viscous friction and time delay , 1972 .

[33]  Ramona A. Tudoran On asymptotically stabilizing the Rikitake two-disk dynamo dynamics , 2011 .

[34]  Jianghong Bao,et al.  Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium , 2017 .

[35]  Edward Bullard,et al.  The stability of a homopolar dynamo , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  Igor Mezić,et al.  Ergodic theory and visualization. II. Fourier mesochronic plots visualize (quasi)periodic sets. , 2015, Chaos.

[37]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .

[38]  Awadhesh Prasad,et al.  Perpetual points and hidden attractors in dynamical systems , 2015 .

[39]  Pagavathigounder Balasubramaniam,et al.  Detecting chaos in a system of four disk dynamos and its control , 2016 .

[40]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[41]  I. Moroz Unstable periodic orbits in a four-dimensional Faraday disk dynamo , 2011 .

[42]  Jaume Llibre,et al.  Darboux integrability and algebraic invariant surfaces for the Rikitake system , 2008 .

[43]  A generalized two-disk dynamo model , 1989 .

[44]  Wei Zhang,et al.  Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo. , 2017, Chaos.

[45]  Pagavathigounder Balasubramaniam,et al.  Chaotic synchronization of Rikitake system based on T-S fuzzy control techniques , 2013 .