On eigenvector-like centralities for temporal networks: Discrete vs. continuous time scales

Abstract Centrality measures play a central role in Complex Networks Theory as much as they provide a tool to rank nodes by their relevance in the processes occurring in a network. In this paper we propose a model for the eigenvector-like centralities of temporal networks that evolve on a continuous time scale. We analytically prove that these centralities can be approximated by the centralities of temporal networks on discrete time scale.

[1]  Mason A. Porter,et al.  Eigenvector-Based Centrality Measures for Temporal Networks , 2015, Multiscale Model. Simul..

[2]  A. Arenas,et al.  Mathematical Formulation of Multilayer Networks , 2013, 1307.4977.

[3]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[4]  Mason A. Porter,et al.  Random Walks on Stochastic Temporal Networks , 2013, ArXiv.

[5]  D. V. Widder,et al.  The Convolution Transform , 1957 .

[6]  Miguel Romance,et al.  Eigenvector centrality of nodes in multiplex networks , 2013, Chaos.

[7]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[8]  Vladimir Batagelj,et al.  Spectral centrality measures in temporal networks , 2015, Ars Math. Contemp..

[9]  Yuichi Yoshida,et al.  Coverage centralities for temporal networks , 2015, The European Physical Journal B.

[10]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[11]  E. A. Leicht,et al.  Large-scale structure of time evolving citation networks , 2007, 0706.0015.

[12]  Vassilis Kostakos Temporal Graphs , 2014, Encyclopedia of Social Network Analysis and Mining.

[13]  Mark C. Parsons,et al.  Communicability across evolving networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Mirco Musolesi,et al.  Spatio-temporal networks: reachability, centrality and robustness , 2015, Royal Society Open Science.

[15]  Cecilia Mascolo,et al.  Centrality prediction in dynamic human contact networks , 2012, Comput. Networks.

[16]  Cecilia Mascolo,et al.  Analysing information flows and key mediators through temporal centrality metrics , 2010, SNS '10.

[17]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[18]  Miguel Romance,et al.  Centralities of a network and its line graph: an analytical comparison by means of their irregularity , 2014, Int. J. Comput. Math..

[19]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[20]  Kristina Lerman,et al.  Centrality metric for dynamic networks , 2010, MLG '10.

[21]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[22]  Naoki Masuda,et al.  Random walk centrality for temporal networks , 2014, ArXiv.

[23]  Desmond J. Higham,et al.  Betweenness in time dependent networks , 2015 .

[24]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[25]  Ernesto Estrada,et al.  Communicability in temporal networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Jari Saramäki,et al.  Path lengths, correlations, and centrality in temporal networks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.