Dynamic adaptive neural network arrays: a neuromorphic architecture

Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.

[1]  Giacomo Indiveri,et al.  Handbook of Computational Intelligence , 2015 .

[2]  Rodrigo Alvarez-Icaza,et al.  Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations , 2014, Proceedings of the IEEE.

[3]  Johannes Schemmel,et al.  A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems , 2010, Biological Cybernetics.

[4]  Catherine D. Schuman,et al.  Dynamic Adaptive Neural Network Array , 2014, UCNC.

[5]  Catherine D. Schuman,et al.  Neuroscience-inspired inspired dynamic architectures , 2014, Proceedings of the 2014 Biomedical Sciences and Engineering Conference.

[6]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[7]  Catherine D. Schuman,et al.  Spatiotemporal Classification Using Neuroscience-Inspired Dynamic Architectures , 2014, BICA.

[8]  Giacomo Indiveri,et al.  Neuromorphic Engineering , 2015, Handbook of Computational Intelligence.

[9]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[10]  Catherine D. Schuman,et al.  Dynamic Artificial Neural Networks with Affective Systems , 2013, PloS one.

[11]  Jim D. Garside,et al.  Overview of the SpiNNaker System Architecture , 2013, IEEE Transactions on Computers.

[12]  Johannes Schemmel,et al.  A wafer-scale neuromorphic hardware system for large-scale neural modeling , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[13]  Johannes Schemmel,et al.  Six Networks on a Universal Neuromorphic Computing Substrate , 2012, Front. Neurosci..

[14]  Catherine D. Schuman,et al.  Variable structure dynamic artificial neural networks , 2013, BICA 2013.

[15]  B FurberSteve,et al.  Overview of the SpiNNaker System Architecture , 2013 .

[16]  Giacomo Indiveri,et al.  Integration of nanoscale memristor synapses in neuromorphic computing architectures , 2013, Nanotechnology.

[17]  Catherine D. Schuman,et al.  Visual analytics for neuroscience-inspired dynamic architectures , 2014, 2014 IEEE Symposium on Foundations of Computational Intelligence (FOCI).

[18]  Catherine D. Schuman Neuroscience-Inspired Dynamic Architectures , 2015 .

[19]  Garrett S. Rose,et al.  Memristor-Based Neural Logic Blocks for Nonlinearly Separable Functions , 2013, IEEE Transactions on Computers.