The Three Bacterial Lines of Defense against Antimicrobial Agents

Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances.

[1]  You-sheng Ouyang,et al.  Involvement of outer membrane proteins and peroxide-sensor genes in Burkholderia cepacia resistance to isothiazolone , 2013, World Journal of Microbiology and Biotechnology.

[2]  S. Douthwaite,et al.  Activity of the Ketolide Telithromycin Is Refractory to Erm Monomethylation of Bacterial rRNA , 2002, Antimicrobial Agents and Chemotherapy.

[3]  B. Bassler,et al.  Quorum sensing in bacteria. , 2001, Annual review of microbiology.

[4]  M. Webber,et al.  Molecular mechanisms of antibiotic resistance , 2014, Nature Reviews Microbiology.

[5]  M. Bonnaure-Mallet,et al.  Biofilms as a mechanism of bacterial resistance. , 2014, Drug discovery today. Technologies.

[6]  H. Venter,et al.  RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition , 2015, Front. Microbiol..

[7]  M. Arthur,et al.  Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147 , 1993, Journal of bacteriology.

[8]  Wah Chiu,et al.  Structure of the AcrAB-TolC multidrug efflux pump , 2014, Nature.

[9]  T. Foster Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. , 1983, Microbiological reviews.

[10]  Lei Dai,et al.  Characterization of the IncA/C plasmid pSCEC2 from Escherichia coli of swine origin that harbours the multiresistance gene cfr. , 2014, The Journal of antimicrobial chemotherapy.

[11]  Jeff Gore,et al.  Collective antibiotic resistance: mechanisms and implications. , 2014, Current opinion in microbiology.

[12]  G. Jacoby,et al.  Interaction of the Plasmid-Encoded Quinolone Resistance Protein Qnr with Escherichia coli DNA Gyrase , 2005, Antimicrobial Agents and Chemotherapy.

[13]  I. Chopra,et al.  Tetracyclines, molecular and clinical aspects. , 1992, The Journal of antimicrobial chemotherapy.

[14]  Temidayo Oluyomi. Elufisan,et al.  Updates on microbial resistance to drugs , 2012 .

[15]  N. Woodford,et al.  The emergence of antibiotic resistance by mutation. , 2007, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[16]  J. Handzlik,et al.  Recent Advances in Multi-Drug Resistance (MDR) Efflux Pump Inhibitors of Gram-Positive Bacteria S. aureus , 2013, Antibiotics.

[17]  S. Taweechaisupapong,et al.  Diffusion and activity of antibiotics against Burkholderia pseudomallei biofilms. , 2012, International journal of antimicrobial agents.

[18]  Jessica M. A. Blair,et al.  Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. , 2014, Future microbiology.

[19]  Christina Cramer,et al.  Antibiotic Susceptibility Profiles ofEscherichia coli Strains Lacking Multidrug Efflux Pump Genes , 2001, Antimicrobial Agents and Chemotherapy.

[20]  Qun Ma,et al.  Engineering a novel c-di-GMP-binding protein for biofilm dispersal. , 2011, Environmental microbiology.

[21]  F. Vandenesch,et al.  Distribution of Genes Encoding Resistance to Macrolides, Lincosamides, and Streptogramins among Staphylococci , 1999, Antimicrobial Agents and Chemotherapy.

[22]  Thomas K. Wood,et al.  Engineering global regulator Hha of Escherichia coli to control biofilm dispersal , 2010, Microbial biotechnology.

[23]  E. Drenkard Antimicrobial resistance of Pseudomonas aeruginosa biofilms. , 2003, Microbes and infection.

[24]  J. Helmann The extracytoplasmic function (ECF) sigma factors. , 2002, Advances in microbial physiology.

[25]  John W. Beaber,et al.  SOS response promotes horizontal dissemination of antibiotic resistance genes , 2004, Nature.

[26]  A. Yamaguchi,et al.  Structural basis of RND-type multidrug exporters , 2015, Front. Microbiol..

[27]  G. Donelli,et al.  Microbial Biofilms , 2014, Methods in Molecular Biology.

[28]  D. Allison,et al.  The Biofilm Matrix , 2003, Biofouling.

[29]  Ashok Sharma,et al.  Synergy Potential of Indole Alkaloids and Its Derivative against Drug‐resistant Escherichia coli , 2015, Chemical biology & drug design.

[30]  Michael R Gillings,et al.  Integrons: Past, Present, and Future , 2014, Microbiology and Molecular Reviews.

[31]  T. Tsuchiya,et al.  Functional study of the novel multidrug efflux pump KexD from Klebsiella pneumoniae. , 2012, Gene.

[32]  H. Sahl,et al.  Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall , 2013, Annals of the New York Academy of Sciences.

[33]  M. Vulić,et al.  SOS Response Induces Persistence to Fluoroquinolones in Escherichia coli , 2009, PLoS genetics.

[34]  D. Allison,et al.  An evaluation of the potential of the multiple antibiotic resistance operon (mar) and the multidrug efflux pump acrAB to moderate resistance towards ciprofloxacin in Escherichia coli biofilms. , 2000, The Journal of antimicrobial chemotherapy.

[35]  D. Lebeaux,et al.  Novel approaches to combat bacterial biofilms. , 2014, Current opinion in pharmacology.

[36]  C. Walsh Molecular mechanisms that confer antibacterial drug resistance , 2000, Nature.

[37]  A. Grisolia,et al.  Identification of class 1 and 2 integrons from clinical and environmental Salmonella isolates. , 2014, Journal of infection in developing countries.

[38]  G. Igrejas,et al.  Proteome of a methicillin-resistant Staphylococcus aureus clinical strain of sequence type ST398. , 2012, Journal of proteomics.

[39]  R M Hall,et al.  Mobile gene cassettes and integrons: capture and spread of genes by site‐specific recombination , 1995, Molecular microbiology.

[40]  B. Son,et al.  Gene cloning and characterization of MdeA, a novel multidrug efflux pump in Streptococcus mutans. , 2013, Journal of microbiology and biotechnology.

[41]  P. Ruggerone,et al.  AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity , 2015, Proceedings of the National Academy of Sciences.

[42]  B. M. Veeregowda,et al.  Biofilms: A survival strategy of bacteria , 2003 .

[43]  J. Costerton,et al.  The involvement of cell-to-cell signals in the development of a bacterial biofilm. , 1998, Science.

[44]  G. O’Toole,et al.  Mechanisms of biofilm resistance to antimicrobial agents. , 2001, Trends in microbiology.

[45]  Peter Sander,et al.  Mechanisms of Streptomycin Resistance: Selection of Mutations in the 16S rRNA Gene Conferring Resistance , 2001, Antimicrobial Agents and Chemotherapy.

[46]  R. Jayaraman,et al.  Antibiotic resistance: an overview of mechanisms and a paradigm shift , 2009 .

[47]  G. Rossolini,et al.  IMP-12, a New Plasmid-Encoded Metallo-β-Lactamase from a Pseudomonas putida Clinical Isolate , 2003, Antimicrobial Agents and Chemotherapy.

[48]  C. Tribuddharat,et al.  Integron-Mediated Rifampin Resistance inPseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[49]  Cristina Solano,et al.  Biofilm dispersion and quorum sensing. , 2014, Current opinion in microbiology.

[50]  K. Rudi,et al.  Integrons in the Intestinal Microbiota as Reservoirs for Transmission of Antibiotic Resistance Genes , 2014, Pathogens.

[51]  Roberto Kolter,et al.  d-Amino Acids Trigger Biofilm Disassembly , 2010, Science.

[52]  K. Lewis Multidrug tolerance of biofilms and persister cells. , 2008, Current topics in microbiology and immunology.

[53]  H. Nikaido,et al.  Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[54]  B. Kos,et al.  Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. , 2008 .

[55]  P. Stewart,et al.  Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine , 2000, Journal of applied microbiology.

[56]  D. Hughes,et al.  Mutation Rate and Evolution of Fluoroquinolone Resistance in Escherichia coli Isolates from Patients with Urinary Tract Infections , 2003, Antimicrobial Agents and Chemotherapy.

[57]  Philip S. Stewart,et al.  Stratified Growth in Pseudomonas aeruginosa Biofilms , 2004, Applied and Environmental Microbiology.

[58]  K. Bibby,et al.  Efflux as a Glutaraldehyde Resistance Mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa Biofilms , 2015, Antimicrobial Agents and Chemotherapy.

[59]  T. Mah,et al.  Involvement of a Novel Efflux System in Biofilm-Specific Resistance to Antibiotics , 2008, Journal of bacteriology.

[60]  J. Costerton,et al.  Bacterial resistance to antibiotics: the role of biofilms. , 1991, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[61]  P. Glaser,et al.  Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. , 2000, Microbiology.

[62]  Manjunath Hegde,et al.  Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device , 2012, Nature Communications.

[63]  A. Robicsek,et al.  Plasmid-Mediated Quinolone Resistance: a Multifaceted Threat , 2009, Clinical Microbiology Reviews.

[64]  L. Piddock Multidrug-resistance efflux pumps ? not just for resistance , 2006, Nature Reviews Microbiology.

[65]  G. Jacoby Mechanisms of resistance to quinolones. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[66]  C. Fjell,et al.  Knockout of Extracytoplasmic Function Sigma Factor ECF-10 Affects Stress Resistance and Biofilm Formation in Pseudomonas putida KT2440 , 2014, Applied and Environmental Microbiology.

[67]  M. Sugai,et al.  Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. , 1997, Chemotherapy.

[68]  Gerard D. Wright,et al.  The antibiotic resistome: what's new? , 2014, Current opinion in microbiology.

[69]  K. Poole Efflux-mediated antimicrobial resistance. , 2005, The Journal of antimicrobial chemotherapy.

[70]  Yi-Wei Huang,et al.  The contribution of class 1 integron to antimicrobial resistance in Stenotrophomonas maltophilia. , 2015, Microbial drug resistance.

[71]  A. Daley,et al.  Densely adherent growth mode, rather than extracellular polymer substance matrix build-up ability, contributes to high resistance of Staphylococcus epidermidis biofilms to antibiotics. , 2010, The Journal of antimicrobial chemotherapy.

[72]  C. Robinson,et al.  Evidence for the Assembly of a Bacterial Tripartite Multidrug Pump with a Stoichiometry of 3:6:3 , 2011, The Journal of Biological Chemistry.

[73]  Kristina M Smith,et al.  Molecular mechanisms of bacterial quorum sensing as a new drug target. , 2003, Current opinion in chemical biology.

[74]  Tom Coenye,et al.  Quorum Sensing Inhibitors Increase the Susceptibility of Bacterial Biofilms to Antibiotics In Vitro and In Vivo , 2011, Antimicrobial Agents and Chemotherapy.

[75]  H. Ceri,et al.  Multidrug Efflux Pumps: Expression Patterns and Contribution to Antibiotic Resistance in Pseudomonas aeruginosa Biofilms , 2001, Antimicrobial Agents and Chemotherapy.

[76]  J. Foster,et al.  Multidrug-Resistant Staphylococcus aureus in US Meat and Poultry , 2011, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[77]  A. Tomasz,et al.  Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin-resistant mutant of Staphylococcus aureus , 1997, Journal of bacteriology.

[78]  Ronald N. Jones,et al.  Detection of Methyltransferases Conferring High-Level Resistance to Aminoglycosides in Enterobacteriaceae from Europe, North America, and Latin America , 2008, Antimicrobial Agents and Chemotherapy.

[79]  Seok Hoon Hong,et al.  Engineering biofilm formation and dispersal. , 2011, Trends in biotechnology.

[80]  Costerton Jw,et al.  Bacterial resistance to antibiotics: the role of biofilms. , 1991 .

[81]  Samuel I. Miller,et al.  Evidence for Induction of Integron-Based Antibiotic Resistance by the SOS Response in a Clinical Setting , 2012, PLoS pathogens.

[82]  G. Hatfull,et al.  Mycobacterium smegmatis RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance , 1993, Molecular microbiology.

[83]  Michael R. Yeaman,et al.  Mechanisms of Antimicrobial Peptide Action and Resistance , 2003, Pharmacological Reviews.

[84]  P. Dhulster,et al.  Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments , 2014, Archives of Microbiology.

[85]  J. S. Chapman,et al.  Preservative tolerance and resistance , 1998, International journal of cosmetic science.

[86]  S. Campoy,et al.  The SOS response promotes qnrB quinolone‐resistance determinant expression , 2009, EMBO reports.

[87]  T. Mincer,et al.  Enhancement of antibiotic activity against multidrug-resistant bacteria by the efflux pump inhibitor 3,4-dibromopyrrole-2,5-dione isolated from a Pseudoalteromonas sp. , 2015, Journal of natural products.

[88]  Serge Morand,et al.  Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria , 2014, Front. Microbiol..

[89]  Kris Gevaert,et al.  Proteome studies of bacterial antibiotic resistance mechanisms. , 2014, Journal of proteomics.

[90]  A. D. Russell,et al.  Antiseptics and Disinfectants: Activity, Action, and Resistance , 1999, Clinical Microbiology Reviews.

[91]  J. Poehlsgaard,et al.  The Cfr rRNA Methyltransferase Confers Resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A Antibiotics , 2006, Antimicrobial Agents and Chemotherapy.

[92]  W. Dunne,et al.  Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm , 1993, Antimicrobial Agents and Chemotherapy.

[93]  Jon W. Weeks,et al.  Mechanism of coupling drug transport reactions located in two different membranes , 2015, Front. Microbiol..

[94]  M. Putman,et al.  Molecular Properties of Bacterial Multidrug Transporters , 2000, Microbiology and Molecular Biology Reviews.

[95]  Arkady Mustaev,et al.  Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase , 2001, Cell.

[96]  M. Caldara,et al.  The Extracellular Matrix Component Psl Provides Fast-Acting Antibiotic Defense in Pseudomonas aeruginosa Biofilms , 2013, PLoS pathogens.

[97]  Suzana M. Ribeiro,et al.  Bacterial resistance mechanism: what proteomics can elucidate , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[98]  Satoshi Murakami,et al.  Crystal structures of a multidrug transporter reveal a functionally rotating mechanism , 2006, Nature.

[99]  P. Messner,et al.  The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. , 2005, Microbiology.

[100]  P. Stewart,et al.  Direct measurement of chlorine penetration into biofilms during disinfection , 1994, Applied and environmental microbiology.

[101]  V. Ramakrishnan,et al.  The Structural Basis for the Action of the Antibiotics Tetracycline, Pactamycin, and Hygromycin B on the 30S Ribosomal Subunit , 2000, Cell.

[102]  Mitra S. Ganewatta,et al.  Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria. , 2014, Journal of the American Chemical Society.

[103]  V. Saba,et al.  Treatment of Staphylococcus aureus Biofilm Infection by the Quorum-Sensing Inhibitor RIP , 2007, Antimicrobial Agents and Chemotherapy.

[104]  P. Kaulfers,et al.  Plasmid-mediated formaldehyde resistance in Escherichia coli: characterization of resistance gene , 1996, Antimicrobial agents and chemotherapy.

[105]  P. Tulkens,et al.  Aminoglycosides: Activity and Resistance , 1999, Antimicrobial Agents and Chemotherapy.

[106]  Didier Mazel,et al.  Integrons: agents of bacterial evolution , 2006, Nature Reviews Microbiology.

[107]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[108]  J. Costerton,et al.  Biofilms as complex differentiated communities. , 2002, Annual review of microbiology.

[109]  K. Lewis,et al.  Persister cells and tolerance to antimicrobials. , 2004, FEMS microbiology letters.

[110]  P. Lambert,et al.  Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. , 2002, Journal of the Royal Society of Medicine.

[111]  T. Tolker-Nielsen,et al.  Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB‐oprM genes , 2008, Molecular microbiology.

[112]  Robert E. W. Hancock,et al.  Complex Ciprofloxacin Resistome Revealed by Screening a Pseudomonas aeruginosa Mutant Library for Altered Susceptibility , 2008, Antimicrobial Agents and Chemotherapy.

[113]  Thomas Bjarnsholt,et al.  Antibiotic resistance of bacterial biofilms. , 2010, International journal of antimicrobial agents.

[114]  I. Sutherland,et al.  The biofilm matrix--an immobilized but dynamic microbial environment. , 2001, Trends in microbiology.

[115]  N Woodford,et al.  Vancomycin-resistant enterococci , 1993, The Lancet.

[116]  B. Elmoualij,et al.  In vitro approach to study the synergistic effects of tobramycin and clarithromycin against Pseudomonas aeruginosa biofilms using prokaryotic or eukaryotic culture media. , 2015, International journal of antimicrobial agents.

[117]  T. E. Cloete,et al.  Resistance mechanisms of bacteria to antimicrobial compounds , 2003 .

[118]  R. Hancock,et al.  Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. , 2014, Journal of biotechnology.

[119]  R. Novick,et al.  Plasmid-linked Resistance to Inorganic Salts in Staphylococcus aureus , 1968, Journal of bacteriology.

[120]  P. Courvalin,et al.  Characterization of Tn1547, a composite transposon flanked by the IS16 and IS256-like elements, that confers vancomycin resistance in Enterococcus faecalis BM4281. , 1996, Gene.

[121]  K. Drlica,et al.  DNA gyrase, topoisomerase IV, and the 4-quinolones , 1997, Microbiology and molecular biology reviews : MMBR.

[122]  T. Coenye,et al.  Differential Roles of RND Efflux Pumps in Antimicrobial Drug Resistance of Sessile and Planktonic Burkholderia cenocepacia Cells , 2014, Antimicrobial Agents and Chemotherapy.

[123]  Feroz Khan,et al.  Drug Resistance Reversal Potential of Ursolic Acid Derivatives against Nalidixic Acid‐ and Multidrug‐resistant Escherichia coli , 2015, Chemical biology & drug design.

[124]  R. Leclercq,et al.  Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[125]  A. Roberts,et al.  Tn916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. , 2011, FEMS microbiology reviews.

[126]  S. Hasnain,et al.  The extracytoplasmic function sigma factors: role in bacterial pathogenesis. , 2004, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[127]  N. Masuda,et al.  Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[128]  R. Hengge,et al.  Stress responses go three dimensional – the spatial order of physiological differentiation in bacterial macrocolony biofilms , 2014, Environmental microbiology.

[129]  D. Allison,et al.  Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. , 1991, The Journal of antimicrobial chemotherapy.

[130]  J. Costerton,et al.  Antibiotic resistance of bacteria in biofilms , 2001, The Lancet.

[131]  G. Cambray,et al.  The SOS Response Controls Integron Recombination , 2009, Science.

[132]  K. Poole,et al.  Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. , 2001, Journal of molecular microbiology and biotechnology.

[133]  Ching-Tsan Huang,et al.  Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. , 2002, The Journal of antimicrobial chemotherapy.

[134]  G. Jacoby,et al.  Structure of QnrB1, a Plasmid-mediated Fluoroquinolone Resistance Factor* , 2011, The Journal of Biological Chemistry.

[135]  R. Hancock,et al.  The intrinsic resistome of Pseudomonas aeruginosa to β-lactams , 2011, Virulence.

[136]  P. Stewart,et al.  Mechanisms of antibiotic resistance in bacterial biofilms. , 2002, International journal of medical microbiology : IJMM.

[137]  K. Poole Mechanisms of bacterial biocide and antibiotic resistance , 2002, Journal of applied microbiology.

[138]  R. Hancock,et al.  A Broad-Spectrum Antibiofilm Peptide Enhances Antibiotic Action against Bacterial Biofilms , 2014, Antimicrobial Agents and Chemotherapy.

[139]  Y. Kawamura,et al.  Responses of Pseudomonas aeruginosa to antimicrobials , 2014, Front. Microbiol..

[140]  Gerard D. Wright The antibiotic resistome: the nexus of chemical and genetic diversity , 2007, Nature Reviews Microbiology.

[141]  Ned S Wingreen,et al.  Cell shape and cell-wall organization in Gram-negative bacteria , 2008, Proceedings of the National Academy of Sciences.

[142]  A. Brooun,et al.  A Dose-Response Study of Antibiotic Resistance inPseudomonas aeruginosa Biofilms , 2000, Antimicrobial Agents and Chemotherapy.

[143]  S. Soto,et al.  Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm , 2013, Virulence.

[144]  Jun Yu,et al.  Comparative Genomics Study of Multi-Drug-Resistance Mechanisms in the Antibiotic-Resistant Streptococcus suis R61 Strain , 2011, PloS one.

[145]  T. Tsuchiya,et al.  Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. , 2003, The Journal of antimicrobial chemotherapy.

[146]  A. Carattoli Importance of integrons in the diffusion of resistance. , 2001, Veterinary research.

[147]  G. Kampf,et al.  Efficacy of surface disinfectant cleaners against emerging highly resistant gram-negative bacteria , 2014, BMC Infectious Diseases.

[148]  Transposons: The Jumping Genes , 2017 .

[149]  K. Poole Pseudomonas Aeruginosa: Resistance to the Max , 2011, Front. Microbio..

[150]  T. E. Cloete,et al.  Resistance of Pseudomonas aeruginosa to isothiazolone. , 1994, The Journal of applied bacteriology.

[151]  R. Hall,et al.  Transposon Tn21, Flagship of the Floating Genome , 1999, Microbiology and Molecular Biology Reviews.

[152]  K. Poole Efflux pumps as antimicrobial resistance mechanisms , 2007, Annals of medicine.

[153]  C. van Delden,et al.  Resistance and Virulence of Pseudomonas aeruginosa Clinical Strains Overproducing the MexCD-OprJ Efflux Pump , 2008, Antimicrobial Agents and Chemotherapy.

[154]  L. Piddock Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria , 2006, Clinical Microbiology Reviews.

[155]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[156]  P. Nordmann,et al.  Complete sequencing of an IncHI1 plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance-nodulation-cell division/multidrug efflux pump. , 2013, The Journal of antimicrobial chemotherapy.

[157]  Yohei Doi,et al.  16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[158]  K. Bush Proliferation and significance of clinically relevant β‐lactamases , 2013, Annals of the New York Academy of Sciences.

[159]  M. Nakayama,et al.  Role of extracytoplasmic function sigma factors in biofilm formation of Porphyromonas gingivalis , 2015, BMC oral health.

[160]  T. Wood,et al.  Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating , 2014, The ISME Journal.

[161]  I. Paulsen Multidrug efflux pumps and resistance: regulation and evolution. , 2003, Current opinion in microbiology.

[162]  James P. Folsom,et al.  Contribution of Stress Responses to Antibiotic Tolerance in Pseudomonas aeruginosa Biofilms , 2015, Antimicrobial Agents and Chemotherapy.

[163]  E. Greenberg,et al.  A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. , 2006, International journal of medical microbiology : IJMM.

[164]  H. Flemming,et al.  Biofouling in water systems – cases, causes and countermeasures , 2002, Applied Microbiology and Biotechnology.

[165]  S. Levy,et al.  Molecular Mechanisms of Antibacterial Multidrug Resistance , 2007, Cell.

[166]  D. Mazel,et al.  Antibiotics, Present and Future , 1999 .

[167]  Lihua Zhang,et al.  Genetic analysis of Tn916-like elements conferring tetracycline resistance in clinical isolates of Clostridium difficile. , 2014, International journal of antimicrobial agents.

[168]  Y. Kawamura,et al.  MexXY multidrug efflux system of Pseudomonas aeruginosa , 2012, Front. Microbio..

[169]  B. Iglewski,et al.  Bacterial Quorum Sensing in Pathogenic Relationships , 2000, Infection and Immunity.

[170]  Peter Spanogiannopoulos,et al.  The tetracycline resistome , 2010, Cellular and Molecular Life Sciences.

[171]  T. Hampton Report reveals scope of US antibiotic resistance threat. , 2013, JAMA.

[172]  R. Hancock,et al.  Characterization of the Polymyxin B Resistome of Pseudomonas aeruginosa , 2012, Antimicrobial Agents and Chemotherapy.

[173]  S. Schwarz,et al.  Molecular basis of bacterial resistance to chloramphenicol and florfenicol. , 2004, FEMS microbiology reviews.