Fast object approximation for real-time 3D obstacle avoidance with biped robots

In order to achieve fully autonomous humanoid navigation, environment perception must be both fast enough for real-time planning in dynamic environments and robust against previously unknown scenarios. We present an open source, flexible and efficient vision system that represents dynamic environments using simple geometries. Based only on onboard sensing and 3D point cloud processing, it approximates objects using swept-sphere-volumes while the robot is moving. It does not rely on color or any previous models or information. We demonstrate the viability of our approach by testing it on our human-sized biped robot Lola, which is able to avoid moving obstacles in real-time while walking at a set speed of 0.4m/s and performing whole-body collision avoidance.

[1]  Daniel Maier,et al.  Real-time navigation in 3D environments based on depth camera data , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[2]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[3]  Günther Schmidt,et al.  An approach to environment modelling for biped walking robots , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Masahiro Fujita,et al.  3D Perception and Environment Map Generation for Humanoid Robot Navigation , 2008, Int. J. Robotics Res..

[5]  Robert Wittmann,et al.  Real-time pattern generation among obstacles for biped robots , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[6]  Zhengyou Zhang,et al.  Microsoft Kinect Sensor and Its Effect , 2012, IEEE Multim..

[7]  H. Ulbrich,et al.  System Design and Control of Anthropomorphic Walking Robot LOLA , 2009, IEEE/ASME Transactions on Mechatronics.

[8]  Radu Bogdan Rusu,et al.  Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments , 2010, KI - Künstliche Intelligenz.

[9]  Ashley Feniello,et al.  Reliable kinect-based navigation in large indoor environments , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Herbert Süße,et al.  A new efficient algorithm for fitting rectangular boxes and cubes in 3D , 2005, IEEE International Conference on Image Processing 2005.

[11]  Masahiro Fujita,et al.  A Floor and Obstacle Height Map for 3D Navigation of a Humanoid Robot , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[12]  A. Howard,et al.  Real-time 3D Stereo Mapping in Complex Dynamic Environments , 2012 .

[13]  Luc Van Gool,et al.  Object Detection and Tracking for Autonomous Navigation in Dynamic Environments , 2010, Int. J. Robotics Res..

[14]  Heinz Ulbrich,et al.  Entwurf und Regelung des Humanoiden Laufroboters Lola , 2010, Autom..

[15]  Heinz Ulbrich,et al.  Experiments in fast biped walking , 2011, 2011 IEEE International Conference on Mechatronics.

[16]  Christian Whler 3D Computer Vision: Efficient Methods and Applications , 2009 .

[17]  Herbert Süße,et al.  Robust Fitting of 3D Objects by Affinely Transformed Superellipsoids Using Normalization , 2007, CAIP.

[18]  Masayuki Inaba,et al.  Vision-based 2.5D terrain modeling for humanoid locomotion , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[19]  Takeo Kanade,et al.  Footstep Planning for the Honda ASIMO Humanoid , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[20]  Robert Wittmann,et al.  Real-time 3D collision avoidance for biped robots , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Heinz Ulbrich,et al.  Vertical Angular Momemtum Minimization for Biped Robots with Kinematically Redundant Joints , 2012 .

[22]  Christian Wöhler,et al.  3D Computer Vision - Efficient Methods and Applications , 2009, X.media.publishing.

[23]  Satoshi Kagami,et al.  Autonomous navigation of a humanoid robot over unknown rough terrain using a laser range sensor , 2012, Int. J. Robotics Res..

[24]  Satoshi Kagami,et al.  Biped navigation in rough environments using on-board sensing , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Sander Oude Elberink,et al.  Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications , 2012, Sensors.

[26]  Heinz Ulbrich,et al.  Self-collision avoidance and angular momentum compensation for a biped humanoid robot , 2011, 2011 IEEE International Conference on Robotics and Automation.

[27]  Cyrill Stachniss,et al.  Vision-Based humanoid Navigation using Self-Supervised Obstacle Detection , 2013, Int. J. Humanoid Robotics.

[28]  Jidong Huang,et al.  Study on the use of Microsoft Kinect for robotics applications , 2012, Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium.

[29]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.