Organic compounds in meteorites and their origins

C1 and C2 carbonaceous chondrites contain several percent of organic matter, mainly as a bridged aromatic polymer containing COOH, OH, and CO groups, as well as heterocyclic rings containing N, O, and S. The remaining 5–30% includes the following compound classes, either present initially or generated by solvolysis: alkanes (mainly normal), alkenes, arenes, alicyclics, alcohols, aliphatic carboxylic acids, purines, pyrimidines, and other basic N-compounds, amino acids, porphyrin-like pigments, carbynes, etc.

[1]  E. Anders,et al.  Origin of organic matter in early solar system—III. Amino acids: Catalytic synthesis , 1971 .

[2]  R. Hayatsu,et al.  Analyses of complex mixtures of hydrocarbons by time-of-flight mass spectrometry-open tube chromatography , 1968 .

[3]  E. Anders,et al.  CHEMICAL FRACTIONATIONS IN METEORITES. II. ABUNDANCE PATTERNS AND THEIR INTERPRETATION. , 1967 .

[4]  E. Anders,et al.  Origin of organic matter in early solar system—II. Nitrogen compounds , 1968 .

[5]  T. E. Bunch,et al.  Carbonaceous chondrites. II - Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions , 1980 .

[6]  R. Snell,et al.  Observations of interstellar HNC, DNC, and HN 13 C: temperature effects on deuterium fractionation. , 1979 .

[7]  R. Clayton,et al.  Nitrogen isotope fractionations in the Fischer-Tropsch synthesis and in the Miller-Urey reaction , 1979 .

[8]  Norman J. Bowman,et al.  Products of Hydrogenation of Carbon Monoxide - Oil-Soluble Oxygenated Compounds , 1953 .

[9]  E. Anders,et al.  Interstellar Molecules: Origin by Catalytic Reactions on Grain Surfaces? , 1974 .

[10]  C. Karr Analytical methods for coal and coal products , 1978 .

[11]  E. Peltzer,et al.  α-Hydroxycarboxylic acids in the Murchison meteorite , 1978, Nature.

[12]  A. Cameron,et al.  Numerical models of the primitive solar nebula. , 1973 .

[13]  E. Anders,et al.  Stellar condensates in meteorites - Isotopic evidence from noble gases , 1979 .

[14]  E. Anders,et al.  Origin of organic matter in early solar system—I. Hydrocarbons , 1968 .

[15]  EUGENE D. McCARTHY,et al.  Organic Geochemical Studies. I. Molecular Criteria for Hydrocarbon Genesis , 1967, Nature.

[16]  I. Kaplan,et al.  Endogenous Carbon in Carbonaceous Meteorites , 1970, Science.

[17]  R. Winans,et al.  Phenolic Ethers in the Organic Polymer of the Murchison Meteorite , 1980, Science.

[18]  B. Levin Organic Compounds in the Solar System , 1969 .

[19]  E. Anders,et al.  Origin of Organic Matter in Early Solar System-V , 1972 .

[20]  W. S. Updegrove,et al.  Organic Analysis of the Pueblito de Allende Meteorite , 1970, Nature.

[21]  E. Anders CHEMICAL PROCESSES IN THE EARLY SOLAR SYSTEM, AS INFERRED FROM METEORITES. , 1968 .

[22]  H. Urey,et al.  On the Early Chemical History of the Earth and the Origin of Life. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[23]  S. Miller A production of amino acids under possible primitive earth conditions. , 1953, Science.

[24]  J. Larimer Chemical fractionations in meteorites—VII. Cosmothermometry and cosmobarometry , 1973 .

[25]  J. Oró,et al.  Organic compounds in meteorites. V - Gas chromatographic-mass spectrometric studies on the isoprenoids and other isomeric alkanes in graphitic nodules of iron meteorites , 1970 .

[26]  R. Lemmon,et al.  FORMATION OF ADENINE BY ELECTRON IRRADIATION OF METHANE, AMMONIA, AND WATER. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[27]  K. Kvenvolden,et al.  Nonprotein amino acids in the murchison meteorite. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[28]  E. Chaisson,et al.  Molecules in the Galactic Environment , 1975 .

[29]  J. Oró,et al.  Organic compounds in meteorites—IV. Gas chromatographic-mass spectrometric studies on the isoprenoids and other isomeric alkanes in carbonaceous chondrites , 1970 .

[30]  A. Oparin [The origin of life]. , 1938, Nordisk medicin.

[31]  J. Lawless,et al.  Quantification of monocarboxylic acids in the Murchison carbonaceous meteorite , 1979, Nature.

[32]  G. Arrhenius,et al.  Hydrogen recombination by nonactivated chemisorption on metallic grains , 1971 .

[33]  E. Anders,et al.  Noble Gases in the Murchison Meteorite: Possible Relics of s-Process Nucleosynthesis , 1978, Science.

[34]  E. Anders,et al.  Carbon Isotope Fractionation in the Fischer-Tropsch Synthesis and in Meteorites , 1970, Science.

[35]  A. Cameron,et al.  THE FORMATION OF THE SUN AND PLANETS , 1962 .

[36]  C. Ponnamperuma,et al.  Aromatic Hydrocarbons in the Murchison Meteorite , 1971, Science.

[37]  John S. Lewis,et al.  Low temperature condensation from the solar nebula , 1972 .

[38]  P. Emmett Hydrocarbon synthesis, hydrogenation and cyclization , 1956 .

[39]  R. Hayatsu,et al.  Optical ActivitY in the Orgueil Meteorite , 1965, Science.

[40]  F. Whipple,et al.  THE HISTORY OF THE SOLAR SYSTEM. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Oró,et al.  Free Amino-Acids on Human Fingers: The Question of Contamination in Microanalysis , 1965, Nature.

[42]  B. Zuckerman,et al.  Cyanoacetylene in dense interstellar clouds. , 1975 .

[43]  Ryoichi Hayatsu,et al.  Orgueil Meteorite: Organic Nitrogen Contents , 1964, Science.

[44]  C. Moore,et al.  Amino acids of the Nogoya and Mokoia carbonaceous chondrites , 1976 .

[45]  R. Clayton,et al.  Carbon Isotope Abundance in Meteoritic Carbonates , 1963, Science.

[46]  E. Anders,et al.  Carbynes in Meteorites: Detection, Low-Temperature Origin, and Implications for Interstellar Molecules , 1980, Science.

[47]  F. Asinger Paraffins; chemistry and technology , 1967 .

[48]  K. Kvenvolden,et al.  Amino Acids Indigenous to the Murray Meteorite , 1971, Science.

[49]  E. Anders,et al.  Chemical Evolution of the Carbonaceous Chondrites , 1962 .

[50]  J. Or�,et al.  High-Temperature Synthesis of Aromatic Hydrocarbons from Methane , 1966, Science.

[51]  E. Anders,et al.  Carbynes: Carriers of Primordial Noble Gases in Meteorites , 1980, Science.

[52]  E. Anders,et al.  Purines and triazines in the Murchison meteorite , 1975 .

[53]  H. Alfvén,et al.  Fractionation and condensation in space , 1971 .

[54]  Sumiko Matsuoka,et al.  Origin of organic matter in the early solar system—VII. The organic polymer in carbonaceous chondrites , 1977 .

[55]  M. Briggs Evidence of an Extraterrestrial Origin for Some Organic Constituents of Meteorites , 1963, Nature.

[56]  M. McEwan,et al.  Laboratory investigation of ion–molecule reactions of HC3N in dense interstellar clouds , 1979 .

[57]  I. Wender,et al.  Alkali metals as hydrogenation catalysts for aromatic molecules , 1971 .

[58]  JOHN S. Lewis,et al.  Primodial retention of carbon by the terrestrial planets , 1979 .

[59]  S. Clark,et al.  High-temperature condensates in chondrites and the environment in which they formed , 1973 .

[60]  K. Turekian,et al.  Inhomogeneous accumulation of the earth from the primitive solar nebula. , 1969 .

[61]  G. F. Mitchell,et al.  Long chain carbon molecules and diffuse interstellar lines , 1979, Nature.

[62]  Keizo Yanai,et al.  Amino acids in the Yamato carbonaceous chondrite from Antarctica , 1979, Nature.

[63]  A. G. Whittaker Carbon: A New View of Its High-Temperature Behavior , 1978, Science.

[64]  T. Norris Kinetic model of ammonia synthesis in the solar nebula , 1980 .

[65]  H. Kroto,et al.  The detection of HC 9 N in interstellar space. , 1978 .

[66]  D. Walton,et al.  The detection of cyanohexatriyne in Heiles's cloud 2. , 1978 .

[67]  N. Adams,et al.  Molecular synthesis in interstellar clouds: Radiative association reactions of CH/sub 3//sup +/ ions , 1978 .

[68]  F. Schloerb,et al.  Detection of Deuterated cyanoacetylene in the interstellar cloud TMC 1 , 1980 .

[69]  John M. Hayes,et al.  Organic constituents of meteorites - A review. , 1967 .

[70]  T. Owen,et al.  Mars and Earth: Origin and Abundance of Volatiles , 1977, Science.

[71]  E. Anders,et al.  Origin of organic matter in early solar system—IV. Amino acids: Confirmation of catalytic synthesis by mass spectrometry , 1971 .

[72]  F. Podosek Isotopic Structures in Solar System Materials , 1978 .

[73]  L. Grossman,et al.  Early chemical history of the solar system , 1974 .

[74]  J. Lawless,et al.  Heterocyclic compounds recovered from carbonaceous chondrites , 1973 .

[75]  R. Robinson The Origins of Petroleum , 1966, Nature.

[76]  R. Friedel,et al.  Alkanes in Natural and Synthetic Petroleums: Comparison of Calculated and Actual Compositions , 1963, Science.

[77]  M. O. Dayhoff,et al.  Thermodynamic Equilibrium and the Inorganic Origin of Organic Compounds , 1966, Science.

[78]  A. Penzias Interstellar HCN, HCO/sup +/, and the galactic deuterium gradient , 1979 .

[79]  G. Boato THE ISOTOPIC COMPOSITION OF HYDROGEN AND CARBON IN THE CARBONACEOUS CHONDRITES , 1954 .

[80]  K. Biemann,et al.  High resolution mass spectrometric investigations of the organic constituents of the Murray and Holbrook chondrites , 1968 .

[81]  W. Meinschein,et al.  AQUEOUS, LOW TEMPERATURE ENVIRONMENT OF THE ORGUEIL METEORITE PARENT BODY , 1963, Annals of the New York Academy of Sciences.

[82]  R. Winans,et al.  Analysis of Organic Compounds Trapped in Coal, and Coal Oxidation Products , 1978 .

[83]  R. Clayton,et al.  Nitrogen abundances and isotopic compositions in stony meteorites , 1978 .

[84]  G. Waller Biochemical applications of mass spectrometry , 1972 .

[85]  J. Larimer An experimental investigation of oldhamite, CaS; and the petrologic significance of oldhamite in meteorites , 1968 .

[86]  J. Oró,et al.  Closed system Fischer-Tropsch synthesis over meteoritic iron, iron ore and nickel-iron alloy. [deuterium-carbon monoxide reaction catalysis] , 1976 .

[87]  Stanley L. Miller,et al.  Production of Some Organic Compounds under Possible Primitive Earth Conditions1 , 1955 .

[88]  J F Kerridge,et al.  Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface , 1979, Science.

[89]  J. Oró,et al.  Amino-acids, Aliphatic and Aromatic Hydrocarbons in the Murchison Meteorite , 1971, Nature.

[90]  R. Clayton,et al.  Oxygen isotope cosmothermometer revisited , 1974 .

[91]  A. Duffield,et al.  Dicarboxylic acids in the Murchison meteorite , 1974, Nature.

[92]  S. Miller,et al.  Nonprotein amino acids from spark discharges and their comparison with the murchison meteorite amino acids. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[93]  S. Pizzarello,et al.  Amino Acids in an Antarctic Carbonaceous Chondrite , 1979, Science.

[94]  E. Herbst Radiative association in dense, H/sub 2/-containing interstellar clouds , 1976 .

[95]  Michael A. Grayson,et al.  The organic analysis of the murchison meteorite , 1973 .

[96]  R. E. Dickerson,et al.  Chemical evolution and the origin of life. , 1978, Scientific American.

[97]  J. Lederberg,et al.  Moondust; the study of this covering layer by space vehicles may offer clues to the biochemical origin of life. , 1958, Science.

[98]  E. Anders,et al.  Isotopic anomalies of noble gases in meteorites and their origins. VI Presolar components in the Murchison C2 chondrite , 1980 .

[99]  M. O. Dayhoff,et al.  Thermodynamic Equilibria in Prebiological Atmospheres , 1964, Science.

[100]  L. Grossman Condensation in the primitive solar nebula , 1972 .

[101]  J. Lawless,et al.  Dicarboxylic acids from electric discharge , 1974, Nature.

[102]  D. Clayton Precondensed matter: Key to the early solar system , 1978 .

[103]  C. Sagan,et al.  Long-Wavelength Ultraviolet Photoproduction of Amino Acids on the Primitive Earth , 1971, Science.

[104]  J. Oró,et al.  Configuration of Amino-acids in Carbonaceous Chondrites and a Pre-Cambrian Chert , 1971, Nature.

[105]  B. Alpern,et al.  Distribution de la matière organique dans la météorite d'orgueil par microscopie en fluorescence , 1973 .

[106]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[107]  G. W. Hodgson,et al.  Porphyrins in meteorites: Metal complexes in Orgueil, Murray, Cold Bokkeveld, and Mokoia carbonaceous chondrites , 1969 .

[108]  R. Clayton,et al.  Oxygen isotope cosmothermometer , 1972 .

[109]  James G. Lawless,et al.  Amino acids in the Murchison meteorite , 1973 .

[110]  E. Anders,et al.  Condensation time of the solar nebula from extinct I in primitive meteorites. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[111]  A. Galwey Heterogeneous Reactions in Petroleum Genesis and Maturation , 1969, Nature.

[112]  B. Nagy,et al.  The polymer-like organic material in the Orgueil meteorite , 1976 .

[113]  C. Raub,et al.  Thermal history of primordial metal grains , 1978 .

[114]  W. Huntress,et al.  Laboratory studies of bimolecular reactions of positive ions in interstellar clouds, in comets, and in planetary atmospheres of reducing composition. [Distributions, rate constants] , 1977 .

[115]  A. Galwey The rate of hydrocarbon desorption from mineral surfaces and the contribution of heterogeneous catalytic-type processes to petroleum genesis , 1972 .

[116]  M. Calvin Chemical evolution. , 1975, American scientist.

[117]  R. Clarke,et al.  Occurrence and Significance of Formaldehyde in the Allende Carbonaceous Chondrite , 1972, Nature.

[118]  E. Anders,et al.  Organic Compounds in Carbonaceous Chondrites. , 1965, Science.

[119]  M. Allen,et al.  The molecular composition of dense interstellar clouds , 1977 .

[120]  Alan W. Schwartz,et al.  Search for purines and pyrimidines in the Murchison meteorite , 1977 .

[121]  W. Meinschein Hydrocarbons in terrestrial samples and the Orgueil meteorite , 1963 .

[122]  Sumiko Matsuoka,et al.  Origin of organic matter in early solar system. VI - Catalytic synthesis of nitriles, nitrogen bases and porphyrin-like pigments. , 1972 .

[123]  D. Bohme,et al.  An ion-molecule scheme for the synthesis of hydrocarbon-chain and organonitrogen molecules in dense interstellar clouds. , 1979 .

[124]  G. Yuen,et al.  Aliphatic amines in the Murchison meteorite , 1976, Nature.

[125]  W. D. Watson Interstellar molecule reactions , 1976 .

[126]  J. S. Lewis,et al.  Kinetic inhibition of CO and N2 reduction in the solar nebula , 1980 .

[127]  J. Larimer The effect of C/O ratio on the condensation of planetary material , 1975 .

[128]  L. Merlivat,et al.  Deuterium concentration in the early Solar System: hydrogen and oxygen isotope study , 1979, Nature.

[129]  Y. Kolodny,et al.  Deuterium in carbonaceous chondrites , 1980 .

[130]  P. Eberhardt,et al.  Presolar grains in Orgueil - Evidence from neon-E , 1979 .

[131]  G. Hodgson,et al.  Prebiotic porphyrin genesis: porphyrins from electric discharge in methane, ammonia, and water vapor. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[132]  A. E. Lilley,et al.  Detection of interstellar trans-ethyl alcohol , 1975 .

[133]  Norman J. Bowman,et al.  Products of the Hydrogenation of Carbon Monoxide over an Iron Catalyst - Aliphatic and Alicyclic Hydrocarbons , 1953 .

[134]  G. F. Mitchell,et al.  The synthesis of complex molecules in interstellar clouds , 1979 .

[135]  I. Kaplan,et al.  Light hydrocarbon gases, C13, and origin of organic matter in carbonaceous chondrites , 1970 .

[136]  E. Anders,et al.  Organic Compounds in Meteorites , 1973, Science.

[137]  J. Oro,et al.  Synthesis of Fatty Acids by a Closed System Fischer-Tropsch Process , 1979 .

[138]  Carl Sagan,et al.  Tholins: organic chemistry of interstellar grains and gas , 1978, Nature.

[139]  Alan W. Schwartz,et al.  Nitrogen-heterocyclic compounds in meteorites: significance and mechanisms of formation , 1981 .

[140]  K. Kvenvolden,et al.  Monocarboxylic Acids in Murray and Murchison Carbonaceous Meteorites , 1973, Nature.

[141]  E. Anders,et al.  Isotopic anomalies of noble gas in meteorites and their origins: Separated minerals from Allende , 1977 .

[142]  Alan W. Schwartz,et al.  Uracil in carbonaceous meteorites , 1979, Nature.

[143]  S. Miller,et al.  Prebiotic synthesis of hydrophobic and protein amino acids. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[144]  K. Kvenvolden,et al.  Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite , 1970, Nature.

[145]  J. Oró,et al.  Organic compounds in meteorites—III. Distribution and identification of aliphatic hydrocarbons produced by open flow Fischer-Tropsch processes , 1970 .

[146]  C. Moore,et al.  Amino Acid Analyses of the Murchison, Murray, and Allende Carbonaceous Chondrites , 1971, Science.

[147]  R. J. Olson,et al.  Organic compounds in meteorites—II Aromatic hydrocarbons , 1967 .

[148]  K. Kvenvolden,et al.  Physical Sciences: Evidence for Amino-acids of Extraterrestrial Origin in the Orgueil Meteorite , 1972, Nature.