Structural characterization and luminescence properties of nanostructured lanthanide-doped Sc2O3 prepared by propellant synthesis

Nanocrystalline powders of undoped and lanthanide-doped scandium oxide were prepared by propellant synthesis and characterized by x-ray powder diffraction, electron microscopy, EDX spectroscopy and luminescence spectroscopy. The obtained material has the Sc2O3 cubic structure (space group ) with unit cell parameter increasing with the size of the dopant. The crystallite size is in the range 20–40 nm. The lanthanide-doped samples form Sc2−xLnxO3 solid solutions with x≈0.2 (Ln = Eu or Er). No inhomogeneity was found by microanalysis on the micron scale. The emission spectrum of the Eu3+ doped Sc2O3 sample shows strong bands in the visible region assigned to 4f–4f transitions of the lanthanide ions.

[1]  A.M.A. van Dongen,et al.  Europium (III) in oxide glasses: Dependence of the emission spectrum upon glass composition , 1989 .

[2]  B. Tissue Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts , 1998 .

[3]  J. McKittrick,et al.  The influence of processing parameters on luminescent oxides produced by combustion synthesis , 1999 .

[4]  Klaus Petermann,et al.  Efficient laser operation of Yb3+ : Sc2O3and spectroscopic characterization of Pr3+ in cubic sesquioxides , 2000 .

[5]  Michael Veith,et al.  Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12via different sol–gel methods , 1999 .

[6]  A. Speghini,et al.  Structural Investigation and Anti-Stokes Emission of Scandium Oxide Nanocrystals Activated with Trivalent Erbium , 2005 .

[7]  Qiang-Bing Li,et al.  Effects of grain size on wavelength of Y2O3:Eu3+ emission spectra , 1997 .

[8]  B. Warren,et al.  The Effect of Cold‐Work Distortion on X‐Ray Patterns , 1950 .

[9]  G. Boulon,et al.  New criteria to choose the best Yb3+-doped laser crystals , 2001 .

[10]  W. Strek,et al.  Size effects on optical properties of Lu2O3:Eu3+ nanocrystallites , 2002 .

[11]  H. Hofmeister,et al.  Shape and internal structure of silver nanoparticles embedded in glass , 2005 .

[12]  A. Speghini,et al.  Upconversion dynamics in Er3+ doped nanocrystalline YAlO3 , 2004 .

[13]  Hergen Eilers,et al.  Synthesis and characterization of nanophase yttria co-doped with erbium and ytterbium , 2006 .

[14]  M. Bell,et al.  Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses , 2001 .

[15]  M. Gaft,et al.  Europium probe for estimation of site symmetry in glass films, glasses and crystals , 2004 .

[16]  Young Woon Kim,et al.  Electrochemical Sc2O3 Single Crystal Growth , 2004 .

[17]  L. Sangaletti,et al.  Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3 , 1999 .

[18]  A. Burger,et al.  Luminescence and spectroscopic behavior of Eu3+-doped Y2O3 and Lu2O3 epitaxial films grown by pulsed-laser deposition , 2005 .

[19]  M. Lastusaari,et al.  Crystal field strength in C-type cubic rare earth oxides , 2002 .

[20]  R. Meltzer,et al.  Dependence of fluorescence lifetimes of Y2O3 : Eu3+ nanoparticles on the surrounding medium , 1999 .

[21]  A. Speghini,et al.  Yttria-based nano-sized powders: A new class of fractal materials obtained by combustion synthesis , 2000 .

[22]  P. Canton,et al.  Characterization of Nanoporous Lanthanide-Doped YAG Powders Obtained by Propellant Synthesis , 2004 .

[23]  G. West,et al.  A comparison of the Eu3+ temperature dependent emission lifetimes in Sc2O3, Y2O3 and Gd2O3 host crystals , 1992 .

[24]  S. Enzo,et al.  A Profile-Fitting Procedure for Analysis of Broadened X-ray Diffraction Peaks. I. Methodology , 1988 .

[25]  P. Canton,et al.  Characterization of Nanoporous Lanthanide-Doped Gadolinium Gallium Garnet Powders Obtained by Propellant Synthesis , 2005 .

[26]  J. Ying,et al.  The selective catalytic reduction of nitric oxide with methane over scandium oxide, yttrium oxide and lanthanum oxide , 1998 .

[27]  Chunhua Yan,et al.  Tetragonal‐to‐Monoclinic Phase Transitions in Nanocrystalline Rare‐Earth‐Stabilized Zirconia Prepared by a Mild Hydrothermal Method , 2004 .

[28]  B. Warren,et al.  The Separation of Cold‐Work Distortion and Particle Size Broadening in X‐Ray Patterns , 1952 .

[29]  S. Bucella,et al.  Preparation, structural characterization, and luminescence properties of Eu^3+-doped nanocrystalline ZrO_2 , 2005 .

[30]  C. Wagner,et al.  X‐Ray Diffraction Study of the Effects of Solutes on the Occurrence of Stacking Faults in Silver‐Base Alloys , 1962 .

[31]  O. Malta,et al.  The crystal field strength parameter and the maximum splitting of the 7F1 manifold of the Eu3+ ion in oxides , 1995 .

[32]  Klaus Petermann,et al.  High melting sesquioxides: crystal growth, spectroscopy, and laser experiments , 2002 .

[33]  J. Lee,et al.  The effects of particle size and surface recombination rate on the brightness of low-voltage phosphor , 1997 .

[34]  C. Ronda Recent achievements in research on phosphors for lamps and displays , 1997 .

[35]  S. Mathur,et al.  Evidence of the formation of mixed-metal garnets via sol–gel synthesis , 2003 .

[36]  S. Enzo,et al.  Applications of fitting techniques to the Warren-Averbach method for X-ray line broadening analysis , 1985 .

[37]  John L. Hutchison,et al.  Luminescence Properties of Nanocrystalline Y2O3:Eu , 2001 .

[38]  A. Speghini,et al.  Variation of Fluorescence Lifetimes and Judd-Ofelt Parameters between Eu3+ Doped Bulk and Nanocrystalline Cubic Lu2O3 , 2004 .