Formation and Evolution of Planetary Systems: Upper Limits to the Gas Mass in HD 105

We report infrared spectroscopic observations of HD 105, a nearby (~40 pc) and relatively young (~30 Myr) G0 star with excess infrared continuum emission, which has been modeled as arising from an optically thin circumstellar dust disk with an inner hole of size 13 AU. We have used the high spectral resolution mode of the Infrared Spectrometer (IRS) on the Spitzer Space Telescope to search for gas emission lines from the disk. The observations reported here provide upper limits to the fluxes of H2 S(0) 28 μm, H2 S(1) 17 μm, H2 S(2) 12 μm, [Fe II] 26 μm, [Si II] 35 μm, and [S I] 25 μm infrared emission lines. The H2 line upper limits place direct constraints on the mass of warm molecular gas in the disk: M(H2) < 4.6, 3.8 × 10-2, and 3.0 × 10-3 MJ at T = 50, 100, and 200 K, respectively. We also compare the line flux upper limits to predictions from detailed thermal/chemical models of various gas distributions in the disk. These comparisons indicate that if the gas distribution has an inner hole with radius ri,gas, the surface density at that inner radius is limited to values ranging from 3 g cm-2 at ri,gas = 0.5 AU to 0.1 g cm-2 at ri,gas = 5-20 AU. These values are considerably below the value for a minimum mass solar nebula, and suggest that less than 1 Jupiter mass (MJ) of gas (at any temperature) exists in the 1-40 AU planet-forming region. Therefore, it is unlikely that there is sufficient gas for gas giant planet formation to occur in HD 105 at this time.

[1]  K. Rice,et al.  Protostars and Planets V , 2005 .

[2]  MARCS: MODEL STELLAR ATMOSPHERES AND THEIR APPLICATION TO THE PHOTOMETRIC CALIBRATION OF THE SPITZER SPACE TELESCOPE INFRARED SPECTROGRAPH (IRS) , 2004, astro-ph/0406104.

[3]  Astrophysics,et al.  Models of the formation of the planets in the 47 UMa system , 2002, Astronomy &amp; Astrophysics.

[4]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[5]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[6]  Formation of terrestrial planets in a dissipating gas disk , 2003 .

[7]  Steven V. W. Beckwith,et al.  Circumstellar disks and the search for neighbouring planetary systems , 1996, Nature.

[8]  Geoffrey A. Blake,et al.  High-Resolution 4.7 Micron Keck/NIRSPEC Spectroscopy of the CO Emission from the Disks Surrounding Herbig Ae Stars , 2004 .

[9]  L. Testi,et al.  Large grains in the disk of CQ Tau , 2003, astro-ph/0303420.

[10]  D. Davis,et al.  Accretional Evolution of a Planetesimal Swarm , 1997 .

[11]  Dust Migration and Morphology in Optically Thin Circumstellar Gas Disks , 2000, astro-ph/0012464.

[12]  8-13 μm Spectroscopy of Young Stellar Objects: Evolution of the Silicate Feature , 2004, astro-ph/0412033.

[13]  Astronomy,et al.  H2 and CO Emission from Disks around T Tauri and Herbig Ae Pre-Main-Sequence Stars and from Debris Disks around Young Stars: Warm and Cold Circumstellar Gas , 2001, astro-ph/0107006.

[14]  M. Deleuil,et al.  Deficiency of molecular hydrogen in the disk of β Pictoris , 2001, Nature.

[15]  S. Wolf,et al.  The Circumstellar Disk of the Butterfly Star in Taurus , 2003, astro-ph/0301335.

[16]  Theodore Simon,et al.  Discovery of CO Gas in the Inner Disk of TW Hydrae , 2004 .

[17]  O. Hubickyj,et al.  Evolution of Gas Giant Planets Using the Core Accretion Model , 2004 .

[18]  Ewine F. van Dishoeck ISO Spectroscopy of Gas and Dust: From Molecular Clouds to Protoplanetary Disks , 2004 .

[19]  D. Soderblom,et al.  The evolution of the lithium abundances of solar-type stars. I. The Hyades and Coma Berenices clusters , 1990 .

[20]  K. Miyake,et al.  Effects of Particle Size Distribution on Opacity Curves of Protoplanetary Disks around T Tauri Stars , 1993 .

[21]  R. Jayawardhana,et al.  Indications for Grain Growth and Mass Decrease in Cold Dust Disks around Classical T Tauri Stars in the MBM 12 Young Association , 2003, astro-ph/0307483.

[22]  J. Valenti,et al.  The Far-Ultraviolet Spectrum of TW Hydrae. I. Observations of H2 Fluorescence , 2002, astro-ph/0201319.

[23]  J. S. Bary,et al.  Detections of Rovibrational H2 Emission from the Disks of T Tauri Stars , 2003 .

[24]  Sallie L. Baliunas,et al.  A Survey of CA II H and K Chromospheric Emission in Southern Solar-Type Stars , 1996 .

[25]  C. Dominik,et al.  Passive Irradiated Circumstellar Disks with an Inner Hole , 2001, astro-ph/0106470.

[26]  R. Sari,et al.  Final Stages of Planet Formation , 2004, astro-ph/0404240.

[27]  Uma Gorti,et al.  Models of Chemistry, Thermal Balance, and Infrared Spectra from Intermediate-Aged Disks around G and K Stars , 2004 .

[28]  Robert D. Mathieu,et al.  Evidence for Residual Material in Accretion Disk Gaps: CO Fundamental Emission from the T Tauri Spectroscopic Binary DQ Tauri , 2001 .

[29]  Ch. Leinert,et al.  Evidence for grain growth in T Tauri disks , 2003, astro-ph/0311587.

[30]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[31]  L. Pasquini,et al.  F, G and K stars in the ROSAT all-sky survey. I. Photometry , 1998 .

[32]  D. Padgett,et al.  The Formation and Evolution of Planetary Systems: First Results from a Spitzer Legacy Science Program , 2004, astro-ph/0406301.

[33]  H. Klahr,et al.  Dust Distribution in Gas Disks: A Model for the Ring around HR 4796A , 2000, astro-ph/0007422.

[34]  U. Gorti,et al.  Photoevaporation of Circumstellar Disks Due to External Far-Ultraviolet Radiation in Stellar Aggregates , 2004, astro-ph/0404383.

[35]  P. Feldman,et al.  Rapid Dissipation of Primordial Gas from the AU Microscopii Debris Disk , 2005, astro-ph/0505302.

[36]  C. Kulesa,et al.  CO Emission from Disks around AB Aurigae and HD 141569: Implications for Disk Structure and Planet Formation Timescales , 2003 .

[37]  C. Clarke,et al.  The dispersal of circumstellar discs: the role of the ultraviolet switch , 2001 .

[38]  J. Bally,et al.  Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula , 1998 .

[39]  Northern Arizona University,et al.  CONTINUUM AND CO/HCO + EMISSION FROM THE DISK AROUND THE T TAURI STAR LkCa 15 , 2003, astro-ph/0307246.

[40]  J. Najita,et al.  Gas in the Terrestrial Planet Region of Disks: CO Fundamental Emission from T Tauri Stars , 2003 .

[41]  K. M. Merrill,et al.  Circumstellar Disks in the Orion Nebula Cluster , 1998 .

[42]  Frank H. Shu,et al.  Photoevaporation of Disks around Massive Stars and Application to Ultracompact H II Regions , 1994 .

[43]  Martin G. Cohen,et al.  Constraining the Lifetime of Circumstellar Disks in the Terrestrial Planet Zone: A Mid-Infrared Survey of the 30 Myr old Tucana-Horologium Association , 2004, astro-ph/0405271.

[44]  Evidence for Dust Grain Growth in Young Circumstellar Disks , 2001, Science.

[45]  H. Levison,et al.  Remarks on Modeling the Formation of Uranus and Neptune , 2001 .

[46]  S. Randich,et al.  Membership, lithium, and metallicity in the young open clusters IC 2602 and IC 2391: Enlarging the sample ?;?? , 2001, astro-ph/0103260.

[47]  J. Greaves Dense gas discs around T Tauri stars , 2004 .

[48]  E. Observatory,et al.  Evidence for a hot dust-free inner disk around 51 Oph , 2004, astro-ph/0412514.

[49]  Alan P. Boss,et al.  Rapid Formation of Outer Giant Planets by Disk Instability , 2003 .

[50]  C. Dominik,et al.  Grain growth in the inner regions of Herbig Ae/Be star disks , 2003 .

[51]  D. Fischer,et al.  Excitation of Orbital Eccentricities of Extrasolar Planets by Repeated Resonance Crossings , 2001, astro-ph/0110384.

[52]  S. Hubrig,et al.  Nearby young stars , 2003 .

[53]  Radial Flow of Dust Particles in Accretion Disks , 2002, astro-ph/0208552.

[54]  Ucla,et al.  A SEARCH FOR WARM CIRCUMSTELLAR DISKS IN THE TW HYDRAE ASSOCIATION , 2004, astro-ph/0401318.

[55]  EVOLUTION OF COLD CIRCUMSTELLAR DUST AROUND SOLAR-TYPE STARS , 2004, astro-ph/0411020.

[56]  C. Dominik,et al.  The effect of dust settling on the appearance of protoplanetary disks , 2004, astro-ph/0405226.

[57]  T. Forveille,et al.  Inhibition of giant-planet formation by rapid gas depletion around young stars , 1995, Nature.

[58]  S. Weidenschilling,et al.  Aerodynamics of solid bodies in the solar nebula. , 1977 .

[59]  A. Dutrey,et al.  A Keplerian disk around the Herbig Ae star HD 34282 , 2002, astro-ph/0210097.

[60]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[61]  Gianpiero Tagliaferri,et al.  Fast-rotating nearby solar-type stars - I. Spectral classification, v sin i, Li abundances and X-ray luminosities , 2002 .

[62]  CO emission from discs around isolated HAeBe and Vega-excess stars , 2005, astro-ph/0502544.

[63]  S. Ida,et al.  The Effect of Tidal Interaction with a Gas Disk on Formation of Terrestrial Planets , 2002 .

[64]  C. Agnor,et al.  Damping of Terrestrial-Planet Eccentricities by Density-Wave Interactions with a Remnant Gas Disk , 2002 .

[65]  H. Kataza,et al.  Search for 17 μm H2 Pure Rotational Emission from Circumstellar Disks , 2005 .

[66]  Nancy Houk,et al.  Michigan catalogue of two-dimensional spectral types for the HD stars , 1975 .

[67]  L. Hartmann,et al.  Viscous diffusion and photoevaporation of stellar disks , 2002, astro-ph/0209498.

[68]  Model Spectral Energy Distributions of Circumstellar Debris Disks. I. Analytic Disk Density Distributions , 2003, astro-ph/0306479.

[69]  M. Skrutskie,et al.  A search for remnant molecular disks around young nearby stars , 1991 .