Applications of optical coherence theory

Abstract Over the last century, classical optical coherence has developed from a few vaguely related concepts into a standing along branch of optics and, more broadly, electromagnetics, that has resulted in a number of groundbreaking discoveries concerning the nature of light, its evolution and interaction with matter. While the theoretical developments of this field have been well documented in a number of excellent monographs and review articles, its applications have never been properly summarized. In this review we cover broadly employed, currently developing, and yet untapped practical outcomes of optical coherence theory used in other fields of science, technology, and medicine.

[1]  Lord Rayleigh F.R.S. LVI. Investigations in optics, with special reference to the spectroscope , 1879 .

[2]  Jari Turunen,et al.  Spectral measurement of coherence Stokes parameters of random broadband light beams , 2019, Photonics Research.

[3]  Yangjian Cai,et al.  Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam , 2015 .

[4]  Emil Wolf,et al.  Invariance of the spectrum of light on propagation. , 1986 .

[5]  McLean,et al.  Laser-target interaction with induced spatial incoherence. , 1986, Physical review letters.

[6]  Olga Korotkova,et al.  Modal expansion for spherical homogeneous sources , 2009 .

[7]  Olga Korotkova,et al.  Light sources generating far fields with tunable flat profiles. , 2012, Optics letters.

[8]  R Birngruber,et al.  Optical coherence tomography of the human skin. , 1997, Journal of the American Academy of Dermatology.

[9]  Sriram Sundaram,et al.  On the origin of the coherence of sunlight on the earth. , 2016, Optics letters.

[10]  Olga Korotkova,et al.  Random sources for rotating spectral densities. , 2017, Optics letters.

[11]  Olga Korotkova,et al.  Invariance and noninvariance of the spectra of stochastic electromagnetic beams on propogation. , 2006, Optics letters.

[12]  E. Wolf Unified theory of coherence and polarization of random electromagnetic beams , 2003 .

[13]  P. B. Radha,et al.  Direct-drive inertial confinement fusion: A review , 2015 .

[14]  Emmett N. Leith,et al.  Wavefront Reconstruction with Diffused Illumination and Three-Dimensional Objects* , 1964 .

[15]  Toni Saastamoinen,et al.  Propagation characteristics of partially coherent beams with spatially varying correlations. , 2011, Optics letters.

[16]  Jeffrey H. Shapiro,et al.  Computational ghost imaging , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[17]  Daniel F. V. James,et al.  Change of polarization of light beams on propagation in free space , 1994 .

[18]  Olga Korotkova Enhanced backscatter in LIDAR systems with retro-reflectors operating through a turbulent ocean. , 2018, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[20]  S Kawata,et al.  Speckle-free image in a laser-diode microscope by using the optical feedback effect. , 1993, Optics letters.

[21]  Toshimitsu Asakura,et al.  Reduction of coherent noise using various artificial incoherent sources , 1985 .

[22]  R. H. Brown,et al.  The Stellar Interferometer at Narrabri Observatory—I: A Description of The Instrument and the Observational Procedure , 1967 .

[23]  F. Gori,et al.  Devising genuine spatial correlation functions. , 2007, Optics Letters.

[24]  D. Klyshko Combine EPR and two-slit experiments: Interference of advanced waves , 1988 .

[25]  Olga Korotkova,et al.  Effects of linear non-image-forming devices on spectra and on coherence and polarization properties of stochastic electromagnetic beams: part II: examples , 2005 .

[26]  Meihua Bi,et al.  Channel Modeling and Performance Analysis of Modulating Retroreflector FSO Systems Under Weak Turbulence Conditions , 2017, IEEE Photonics Journal.

[27]  Shi-Yao Zhu,et al.  Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere. , 2006, Optics letters.

[28]  D. Davies,et al.  Optical coherence-domain reflectometry: a new optical evaluation technique. , 1987, Optics letters.

[29]  T. Visser,et al.  Tunable, anomalous Mie scattering using spatial coherence. , 2015, Optics letters.

[30]  Shih,et al.  Observation of two-photon "ghost" interference and diffraction. , 1995, Physical review letters.

[31]  E. Wolf,et al.  Changes in the state of polarization of a random electromagnetic beam on propagation , 2005 .

[32]  Kurt J. Marfurt,et al.  Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping , 1999 .

[33]  J. Fujimoto,et al.  Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. , 2000, Neoplasia.

[34]  J M Schmitt,et al.  Turbulent nature of refractive-index variations in biological tissue. , 1996, Optics letters.

[35]  Emil Wolf,et al.  Determination of phases of diffracted x-ray beams in investigations of structure of crystals , 2010 .

[36]  Albert A. Michelson,et al.  Measurement of the Diameter of Alpha-Orionis by the Interferometer. , 1921 .

[37]  Klaus R. Freischlad,et al.  Speckle reduction by virtual spatial coherence , 1993, Optics & Photonics.

[38]  M L Luo,et al.  Simultaneous trapping of two types of particles by using a focused partially coherent cosine-Gaussian-correlated Schell-model beam , 2014 .

[39]  G. D. Francia Degrees of Freedom of Image , 1969 .

[40]  Andrew J. Schmitt,et al.  Theory of induced spatial incoherence , 1987 .

[41]  Miguel A. Olvera-Santamaría,et al.  Effect of coherence and polarization on resolution of optical imaging system. , 2011, Optics letters.

[42]  Massimo Santarsiero,et al.  Experimental determination of the size of a source from spectral measurements , 1996 .

[43]  R. Simon,et al.  Twisted Gaussian Schell-model beams , 1993 .

[44]  A. Michelson,et al.  On the Application of Interference Methods to Astronomical Measurements. , 1920, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Gordon,et al.  The Maser—New Type of Microwave Amplifier, Frequency Standard, and Spectrometer , 1955 .

[46]  Emil Wolf,et al.  Recollections of max born , 1995 .

[47]  Emil Wolf,et al.  Solution to the inverse scattering problem for strongly fluctuating media using partially coherent light. , 2002, Optics letters.

[48]  G. W. Stroke,et al.  HOLOGRAPHY WITH SPATIALLY NONCOHERENT LIGHT , 1965 .

[49]  A. Gatti,et al.  Ghost imaging with thermal light: comparing entanglement and classical correlation. , 2003, Physical review letters.

[50]  S. Ponomarenko,et al.  A class of partially coherent beams carrying optical vortices. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  G Agarwal,et al.  Storage and retrieval of correlation functions of partially coherent fields. , 1999, Optics letters.

[52]  Fei Wang,et al.  Lensless imaging with partially coherent light. , 2007, Optics letters.

[53]  A. Fercher,et al.  Optical coherence tomography - principles and applications , 2003 .

[54]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[55]  H Saint-Jalmes,et al.  Full-field optical coherence microscopy. , 1998, Optics letters.

[56]  Paul Scott Carney,et al.  Statistical generalizations of the optical cross-section theorem with application to inverse scattering , 1997 .

[57]  I. Weingärtner Measurement of Mutual Coherence Functions by Image Holography , 1970 .

[58]  Olga Korotkova,et al.  Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams. , 2009, Optics express.

[59]  Noriaki Miyanaga,et al.  Analysis of Spherical Target Illumination with Partially Coherent Light through Random Phase Plate , 1998 .

[60]  John August Anderson,et al.  Application of Michelson's interferometer method to the measurement of close double stars , 1920 .

[61]  M Nieto-Vesperinas,et al.  Partially coherent fluctuating sources that produce the same optical force as a laser beam. , 2013, Optics letters.

[62]  Olga Korotkova,et al.  Random sources generating ring-shaped beams. , 2013, Optics letters.

[63]  Greg Gbur,et al.  Coherence properties of sunlight , 2004 .

[64]  Olga Korotkova,et al.  Random sources for beams with azimuthal intensity variation. , 2016, Optics letters.

[65]  P. B. Lerner,et al.  Coherence properties of blackbody radiation and application to energy harvesting and imaging with nanoscale rectennas , 2015 .

[66]  Chien-Sheng Liu,et al.  Speckle reduction in laser imaging applications using rotating magneto-optical disk. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[67]  V. Ronchi Resolving Power of Calculated and Detected Images , 1961 .

[68]  Olga Korotkova,et al.  Spectral degree of coherence of a random three-dimensional electromagnetic field , 2004 .

[69]  Holland,et al.  The fermionic hanbury brown and twiss experiment , 1999, Science.

[70]  M Kato,et al.  Image quality in holography with a pseudorandom diffuser. , 1981, Applied optics.

[71]  Joshua E. Rothenberg,et al.  Polarization beam smoothing for inertial confinement fusion , 2000 .

[72]  Dalip Singh Mehta,et al.  Determining Field Correlations Produced by Stars from the Study of Spectral Changes in Double Slit Experiment , 2002 .

[73]  Henri Pieron Nomenclature of Retinal Ganglion Cells , 1961 .

[74]  Olga Korotkova,et al.  Mitigation of atmospheric turbulence with random light carrying OAM , 2019, Optics Communications.

[75]  Julius Goldhar,et al.  Use of incoherence to produce smooth and controllable irradiation profiles with KrF fusion lasers , 1986 .

[76]  Shih,et al.  Optical imaging by means of two-photon quantum entanglement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[77]  Olga Korotkova,et al.  Multi-Gaussian Schell-model beams. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[78]  B. Thompson,et al.  Two-point resolution with partially coherent light. , 1967, Journal of the Optical Society of America.

[79]  L. Andrews,et al.  Model for a partially coherent Gaussian beam in atmospheric turbulence with application in lasercom , 2004 .

[80]  V. V. Nikishov,et al.  Spectrum of Turbulent Fluctuations of the Sea-Water Refraction Index , 2000 .

[81]  Daomu Zhao,et al.  Generalized partially coherent beams with nonseparable phases. , 2019, Optics letters.

[82]  Olga Korotkova,et al.  Phase structuring of 2D complex coherence states. , 2019, Optics letters.

[83]  A. G. Piersol Use of coherence and phase data between two receivers in evaluation of noise environments , 1978 .

[84]  F Gori,et al.  Propagation of cross-spectral densities from spherical sources. , 2012, Optics letters.

[85]  Wei Li,et al.  Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of partially coherent light sources , 2017 .

[86]  Olga Korotkova,et al.  Phase structuring of the complex degree of coherence. , 2018, Optics letters.

[87]  Emil Wolf,et al.  Solution of the phase problem in the theory of structure determination of crystals from x-ray diffraction experiments. , 2009, Physical review letters.

[88]  Guy Lamouche,et al.  LOW-COHERENCE INTERFEROMETRY, AN ADVANCED TECHNIQUE FOR OPTICAL METROLOGY IN INDUSTRY , 2004 .

[89]  Walter Munk,et al.  O Gravity Waves in the Atmosphere. , 1954 .

[90]  Brian J. Thompson,et al.  IV Image Formation with Partially Coherent Light , 1969 .

[91]  Jui-Wen Pan,et al.  Speckle noise reduction in the laser mini-projector by vibrating diffuser , 2017 .

[92]  R. H. Brown,et al.  A New type of interferometer for use in radio astronomy , 1954 .

[93]  Kunioki Mima,et al.  Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression , 1984 .

[94]  Michael Lurie Effects of Partial Coherence on Holography with Diffuse Illumination , 1966 .

[95]  Samuel A. Letzring,et al.  Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light , 1989 .

[96]  F. R. Elder,et al.  Radiation from Electrons in a Synchrotron , 1947 .

[97]  E. Wolf,et al.  Generalized stokes parameters of random electromagnetic beams. , 2005, Optics letters.

[98]  A. Einstein Method for the determinination of the statistical values of observations concerning quantities subject to irregular fluctuations , 1987, IEEE ASSP Magazine.

[99]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[100]  A. Fercher,et al.  Eye-length measurement by interferometry with partially coherent light. , 1988, Optics letters.

[101]  Lukas Novotny,et al.  Spatial coherence of sunlight and its implications for light management in photovoltaics , 2015 .

[102]  K. T. Gahagan,et al.  Optical vortex trapping of particles , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[103]  Olga Korotkova,et al.  Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels , 2014 .

[104]  Norman S. Kopeika,et al.  Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov turbulence , 2008 .

[105]  Daniel Feuermann,et al.  First direct measurement of the spatial coherence of sunlight. , 2012, Optics letters.

[106]  Yangjian Cai,et al.  Ghost imaging with twisted Gaussian Schell-model beam. , 2009, Optics express.

[107]  J. Gordon,et al.  Fundamental bounds for antenna harvesting of sunlight. , 2011, Optics letters.

[108]  Freddy T. Nguyen,et al.  Optical coherence tomography: a review of clinical development from bench to bedside. , 2007, Journal of biomedical optics.

[109]  N George,et al.  Speckle reduction using multiple tones of illumination. , 1973, Applied optics.

[110]  V. G. Zhytaryuk,et al.  Two-point Stokes vector parameters of object field for diagnosis and differentiation of optically anisotropic biological tissues , 2017, NanoScience + Engineering.

[111]  Denis G. Colombant,et al.  The Nike KrF laser facility: Performance and initial target experiments , 1996 .

[112]  Dmitry A. Yakovlev,et al.  Scattering Patterns of Orthogonally Polarized Light Components for Statistically Rotationally Invariant Mosaic Birefringent Layers , 2019, Optics and Spectroscopy.

[113]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .

[114]  Weixin Ma,et al.  Beam smoothing by a diffraction-weakened lens array combining with induced spatial incoherence. , 2019, Applied optics.

[115]  G. D. Francia Resolving Power and Information , 1955 .

[116]  E. Wolf New theory of partial coherence in the space–frequency domain. Part I: spectra and cross spectra of steady-state sources , 1982 .

[117]  K. Takada,et al.  New measurement system for fault location in optical waveguide devices based on an interferometric technique. , 1987, Applied optics.

[118]  Olga Korotkova,et al.  Angular spectrum representation for the propagation of arbitrary coherent and partially coherent beams through atmospheric turbulence. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[119]  Olga Korotkova,et al.  Ghost imaging with electromagnetic stochastic beams , 2010 .

[120]  E Collett,et al.  Is complete spatial coherence necessary for the generation of highly directional light beams? , 1978, Optics letters.

[121]  R. White,et al.  Partial coherence matching of synthetic seismograms with seismic traces , 1980 .

[122]  Olga Korotkova,et al.  Twisted EM beams with structured correlations. , 2018, Optics letters.

[123]  J. Ricklin,et al.  Atmospheric optical communication with a Gaussian Schell beam. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[124]  J. L. Harris,et al.  Diffraction and Resolving Power , 1964 .

[125]  Arthur J. Davis,et al.  Line-field confocal time-domain optical coherence tomography with dynamic focusing. , 2018, Optics express.

[126]  R. H. Brown,et al.  Correlation between Photons in two Coherent Beams of Light , 1956, Nature.

[127]  M. Kato,et al.  Speckle-suppressed holography with spatially incoherent source , 1974 .

[128]  Aristide Dogariu,et al.  Variable-coherence tomography for inverse scattering problems. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[129]  C Saloma,et al.  Speckle reduction by wavelength and space diversity using a semiconductor laser. , 1990, Applied optics.

[130]  W. Martienssen,et al.  Holographic reconstruction without granulation , 1967 .

[131]  G. P. Berman,et al.  Scintillation Reduction for Laser Beams Propagating Through Turbulent Atmosphere , 2010 .

[132]  G. Siedler,et al.  Observations of internal wave coherence in the deep ocean , 1974 .

[133]  A. Dogariu,et al.  Variable coherence tomography , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[134]  Philip S. Considine,et al.  Effects of Coherence on Imaging Systems , 1966 .

[135]  M. Lurie,et al.  Fourier-Transform Holograms with Partially Coherent Light: Holographic Measurement of Spatial Coherence* , 1968 .

[136]  H. Inaba,et al.  Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams , 1991 .

[137]  Andrew J. Schmitt,et al.  The effects of optical smoothing techniques on filamentation in laser plasmas , 1988 .

[138]  Lingli Wang,et al.  Speckle reduction in laser projections with ultrasonic waves , 2000 .

[139]  P. H. Cittert,et al.  Die Wahrscheinliche Schwingungsverteilung in Einer von Einer Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene , 1934 .

[140]  A. Friberg,et al.  Classical Coherence of Blackbody Radiation , 2017 .

[141]  O. Korotkova,et al.  Propagation dynamics of partially coherent crescent-like optical beams in free space and turbulent atmosphere. , 2017, Optics express.

[142]  É. Verdet,et al.  Leçons d'optique physique , 2022 .

[143]  R. H. Brown,et al.  Apparent Angular Sizes of Discrete Radio Sources: Observations at Jodrell Bank, Manchester , 1952, Nature.

[144]  Mikhail Charnotskii Coherence of radiation from incoherent sources: II. Ball and disk sources and coherence of sunlight. , 2019, Journal of the Optical Society of America. A, Optics, image science, and vision.

[145]  E. Wolf Three-dimensional structure determination of semi-transparent objects from holographic data , 1969 .

[146]  H. Hopkins On the diffraction theory of optical images , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[147]  R. Leitgeb,et al.  Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]. , 2017, Biomedical optics express.

[148]  O. Korotkova,et al.  Scintillation of nonuniformly polarized beams in atmospheric turbulence. , 2009, Optics letters.

[149]  Emil Wolf,et al.  Coherence effects in Mie scattering. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[150]  Aristide Dogariu,et al.  Variable coherence scattering microscopy. , 2005 .

[151]  T. Tschudi,et al.  Speckle reduction in laser projection systems by diffractive optical elements. , 1998, Applied optics.

[152]  R. Boyd,et al.  "Two-Photon" coincidence imaging with a classical source. , 2002, Physical review letters.

[153]  Olga Korotkova,et al.  Random sources for rectangular far fields. , 2014, Optics letters.

[154]  T. Asakura,et al.  Speckle reduction in coherent information processing , 1996, Proc. IEEE.

[155]  T Suzuki,et al.  Speckle reduction in holography with a spatially incoherent source. , 1975, Applied optics.

[156]  E. Collett,et al.  Partially coherent sources which produce the same far-field intensity distribution as a laser , 1978 .

[157]  E. Schröber,et al.  Elimination of granulation in laser beam projections by means of moving diffusers , 1971 .

[158]  Olga Korotkova,et al.  Gaussian Schell-model arrays. , 2015, Optics letters.

[159]  J. Ricklin,et al.  Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[160]  H. Arsenault,et al.  Partial coherence in the image of an object illuminated with laser light through a moving diffuser , 1970 .

[161]  Ronald J. Adrian,et al.  Hairpin vortex organization in wall turbulencea) , 2007 .

[162]  E Wolf,et al.  Power-excitation diffraction tomography with partially coherent light. , 2001, Optics letters.

[163]  Jixiong Pu,et al.  Radiation forces on a Rayleigh particle by highly focused partially coherent and radially polarized vortex beams. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[164]  R. Hanbury Brown,et al.  The Angular Diameter and Effective Temperature of Zeta Puppis , 1970 .

[165]  Markus Aspelmeyer,et al.  Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator , 2017, Science.

[166]  Jing Cheng,et al.  Theory of ghost scattering with incoherent light sources , 2016 .

[167]  Jean-Jacques Greffet,et al.  Influence of spatial coherence on scattering by a particle. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[168]  E. Wolf,et al.  Theory of diffraction tomography for quasi-homogeneous random objects , 1997 .

[169]  George Gabriel Stokes,et al.  On the Composition and Resolution of Streams of Polarized Light from different Sources , 2009 .

[170]  T. Visser,et al.  Generalized Hanbury Brown-Twiss effect for Stokes parameters. , 2019, Journal of the Optical Society of America. A, Optics, image science, and vision.

[171]  A. Lohmann Wavefront Reconstruction for Incoherent Objects , 1965 .

[172]  Joseph M. Schmitt,et al.  Optical coherence tomography (OCT): a review , 1999 .

[173]  Taco D. Visser,et al.  Polarization and coherence in the Hanbury Brown–Twiss effect , 2018 .

[174]  Olga Korotkova,et al.  Scintillation index of a stochastic electromagnetic beam propagating in random media , 2008 .

[175]  B. P. Ramsay,et al.  Criteria and the Intensity-Epoch Slope , 1941 .

[176]  Dennis Gabor,et al.  Laser speckle and its elimination , 1970 .

[177]  F. Zernike The concept of degree of coherence and its application to optical problems , 1938 .

[178]  Dilraj S Grewal,et al.  Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography , 2013, Current opinion in ophthalmology.

[179]  J. Fujimoto,et al.  In vivo endoscopic optical biopsy with optical coherence tomography. , 1997, Science.

[180]  Chan-Young Park,et al.  Removal of hot spot speckle on rear projection screen using the rotating screen system , 2006 .

[181]  E. Wolf A macroscopic theory of interference and diffraction of light from finite sources II. Fields with a spectral range of arbitrary width , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[182]  F. Jacobsen,et al.  The coherence of reverberant sound fields. , 2000, The Journal of the Acoustical Society of America.

[183]  R. K. Cook,et al.  Measurement of Correlation Coefficients in Reverberant Sound Fields , 1955 .

[184]  J Scott Tyo,et al.  Sensing polarization with variable coherence tomography. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[185]  Daniel F. V. James,et al.  Correlation-induced spectral changes , 1996 .

[186]  W. Bragg,et al.  The Reflection of X-rays by Crystals , 1913 .

[187]  Olga Korotkova,et al.  Beyond the classical Rayleigh limit with twisted light. , 2012, Optics letters.

[188]  Yangjian Cai,et al.  Ghost imaging with incoherent and partially coherent light radiation. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[189]  A Loka,et al.  Holographic image formation using phase plates with incoherent imaging property. , 1976, Applied optics.

[190]  Daomu Zhao,et al.  Optical coherence grids and their propagation characteristics. , 2018, Optics express.

[191]  Ari T. Friberg,et al.  Ghost imaging in the time domain , 2016, Nature Photonics.

[192]  P. Moreau,et al.  Ghost Imaging Using Optical Correlations , 2018 .

[193]  Yangjian Cai,et al.  Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle , 2008, 2008 IEEE PhotonicsGlobal@Singapore.

[194]  James P. Gordon,et al.  Radiation Forces and Momenta in Dielectric Media , 1973 .

[195]  E. Wolf,et al.  Coherence properties of blackbody radiation. I. Correlation tensors of the classical field , 1964 .

[196]  Olga Korotkova,et al.  Convolution approach for beam propagation in random media. , 2016, Optics letters.

[197]  J. Shapiro,et al.  Computational ghost imaging versus imaging laser radar for three-dimensional imaging , 2012, 1212.3253.

[198]  E. Sembera,et al.  Coherence of seismic body waves from local events as measured by a small‐aperture array , 1991 .

[199]  Liyuan Ma,et al.  Optical coherence gratings and lattices. , 2014, Optics letters.

[200]  Neil F. Johnson,et al.  Efficiency of energy transfer in a light-harvesting system under quantum coherence , 2007, 0708.1159.

[201]  R. Boyd,et al.  An introduction to ghost imaging: quantum and classical , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[202]  Tero Setälä,et al.  Visibility in ghost imaging with classical partially polarized electromagnetic beams. , 2011, Optics letters.

[203]  O. A. Hurricane,et al.  High-Energy-Density Physics at the National Ignition Facility , 2017 .

[204]  C. M. Sparrow On Spectroscopic Resolving Power , 1916 .

[205]  Charley Noecker,et al.  StarLight mission: a formation-flying stellar interferometer , 2003, SPIE Astronomical Telescopes + Instrumentation.

[206]  W. T. Welford,et al.  Reduction of speckle in image plane hologram reconstruction by moving pupils , 1971 .

[207]  Toshimitsu Asakura,et al.  Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber , 1985 .

[208]  E. Brannen,et al.  The Question of Correlation between Photons in Coherent Light Rays , 1956, Nature.

[209]  Daomu Zhao,et al.  Propagation of multi-Gaussian Schell-model beams in oceanic turbulence , 2016 .

[210]  Milo W. Hyde,et al.  Power-law Schell-model sources , 2017 .

[211]  Albert A. Michelson,et al.  Measurement by light waves , 1890, American Journal of Science.

[212]  S. P. Obenschain,et al.  Use of induced spatial incoherence for uniform illumination on laser fusion targets. Memorandum report , 1983 .

[213]  Joshua E. Rothenberg,et al.  Comparison of beam-smoothing methods for direct-drive inertial confinement fusion , 1997 .

[214]  Franco Gori,et al.  Beam coherence-polarization matrix , 1998 .

[215]  H. H. Hopkins,et al.  The concept of partial coherence in optics , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[216]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[217]  Emil Wolf,et al.  Principles and development of diffraction tomography , 1996 .

[218]  Praveen C. Pandey,et al.  Enhanced light trapping in dye-sensitized solar cell by coupling to 1D photonic crystal and accounting for finite coherence length , 2017 .

[219]  Olof Bryngdahl,et al.  Holography in White Light , 1970 .

[220]  Daniel F. V. James,et al.  A New Method for Determining the Angular Separation of Double Stars , 1995 .

[221]  Kenneth Steiglitz,et al.  Zero-Temperature Point of the Blackbody Chromaticity Locus , 1965 .

[222]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[223]  Harold Albert Wilson,et al.  The Reflexion of X-Rays by Crystals , 1921 .

[224]  Wei Huang,et al.  Optical trapping Rayleigh dielectric particles with focused partially coherent dark hollow beams , 2015 .

[225]  C. Burckhardt Use of a random phase mask for the recording of fourier transform holograms of data masks. , 1970, Applied optics.

[226]  M. Di Vece,et al.  Possible deviations from AM1.5 illumination in coherent light simulations on plasmonic nanostructures in Perovskite solar cells , 2019, Solar Energy.

[227]  Greg Gbur,et al.  Shaping the focal intensity distribution using spatial coherence. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[228]  Franco Gori,et al.  Modal expansion for J0-correlated Schell-model sources , 1987 .

[229]  E. Wolf,et al.  Spreading of partially coherent beams in random media. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[230]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[231]  Mitsuo Takeda,et al.  Vectorial coherence holography. , 2011, Optics express.

[232]  R. H. Brown,et al.  Stellar Interferometer at Narrabri Observatory , 1968, Nature.

[233]  Stephen A. Boppart,et al.  Inverse scattering for optical coherence tomography , 2006 .

[234]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[235]  E. Wolf Optics in terms of observable quantities , 1954 .

[236]  Federico Toschi,et al.  Inverse energy cascade in three-dimensional isotropic turbulence. , 2011, Physical review letters.

[237]  Manuel Nieto-Vesperinas,et al.  Optical forces on small particles from partially coherent light. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[238]  Chris Garrett,et al.  Space-Time scales of internal waves , 1972 .

[239]  Greg Gbur,et al.  Can spatial coherence effects produce a local minimum of intensity at focus? , 2003, Optics letters.

[240]  Yangjian Cai,et al.  Self-steering partially coherent beams , 2017, Scientific Reports.

[241]  Norman R. Heckenberg,et al.  Optical Particle Trapping with Higher-order Doughnut Beams Produced Using High Efficiency Computer Generated Holograms , 1995 .

[242]  D. Klyshko,et al.  METHODOLOGICAL NOTES: A simple method of preparing pure states of an optical field, of implementing the Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity principle , 1988 .