Immersive Molecular Visualization with Omnidirectional Stereoscopic Ray Tracing and Remote Rendering

Immersive molecular visualization provides the viewer with intuitive perception of complex structures and spatial relationships that are of critical interest to structural biologists. The recent availability of commodity head mounted displays (HMDs) provides a compelling opportunity for widespread adoption of immersive visualization by molecular scientists, but HMDs pose additional challenges due to the need for low-latency, high-frame-rate rendering. State-of-the-art molecular dynamics simulations produce terabytes of data that can be impractical to transfer from remote supercomputers, necessitating routine use of remote visualization. Hardware-accelerated video encoding has profoundly increased frame rates and image resolution for remote visualization, however round-trip network latencies would cause simulator sickness when using HMDs. We present a novel two-phase rendering approach that overcomes network latencies with the combination of omnidirectional stereoscopic progressive ray tracing and high performance rasterization, and its implementation within VMD, a widely used molecular visualization and analysis tool. The new rendering approach enables immersive molecular visualization with rendering techniques such as shadows, ambient occlusion lighting, depth-of-field, and high quality transparency, that are particularly helpful for the study of large biomolecular complexes. We describe ray tracing algorithms that are used to optimizeinteractivity and quality, and we report key performance metrics of the system. The new techniques can also benefit many other application domains.

[1]  Nelson L. Max ATOMLLL: ATOMS with shading and highlights , 1979, SIGGRAPH '79.

[2]  Paul S. Heckbert,et al.  Creating Raster Omnimax Images from Multiple Perspective Views Using the Elliptical Weighted Average Filter , 1986, IEEE Computer Graphics and Applications.

[3]  Ingo Wald,et al.  Extending a C-like language for portable SIMD programming , 2012, PPoPP '12.

[4]  Pat Hanrahan,et al.  A realistic camera model for computer graphics , 1995, SIGGRAPH.

[5]  Michael E. Papka,et al.  Visualizing large-scale atomistic simulations in ultra-resolution immersive environments , 2013, 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV).

[6]  Ingo Wald,et al.  Embree: a kernel framework for efficient CPU ray tracing , 2014, ACM Trans. Graph..

[7]  Thomas Ertl,et al.  Interactive Visualization of Molecular Surface Dynamics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[8]  Henry Fuchs,et al.  Image rendering by adaptive refinement , 1986, SIGGRAPH.

[9]  David K. McAllister,et al.  OptiX: a general purpose ray tracing engine , 2010, ACM Trans. Graph..

[10]  Carolina Cruz-Neira,et al.  Photorealistic 3D omni-directional stereo simulator , 2015, Electronic Imaging.

[11]  M. Landy,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[12]  Kevin Skadron,et al.  Scalable parallel programming , 2008, 2008 IEEE Hot Chips 20 Symposium (HCS).

[13]  John E. Stone,et al.  Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[14]  Kirill Garanzha,et al.  Simpler and faster HLBVH with work queues , 2011, HPG '11.

[15]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[16]  S. Zucker,et al.  Shape-from-shading on a cloudy day , 1994 .

[17]  Klaus Schulten,et al.  GPU-accelerated molecular visualization on petascale supercomputing platforms , 2013, UltraVis@SC.

[18]  Matthieu Chavent,et al.  MetaMol: high-quality visualization of molecular skin surface. , 2008, Journal of molecular graphics & modelling.

[19]  Klaus Schulten,et al.  A system for interactive molecular dynamics simulation , 2001, I3D '01.

[20]  Klaus Schulten,et al.  Immersive Molecular Visualization and Interactive Modeling with Commodity Hardware , 2010, ISVC.

[21]  Aaron Knoll,et al.  Interactive Isosurface Ray Tracing of Time-Varying Tetrahedral Volumes , 2007, IEEE Transactions on Visualization and Computer Graphics.

[22]  David S. Goodsell,et al.  ePMV embeds molecular modeling into professional animation software environments. , 2011, Structure.

[23]  Timo Aila,et al.  Fast parallel construction of high-quality bounding volume hierarchies , 2013, HPG '13.

[24]  Klaus Schulten,et al.  Immersive Out-of-Core Visualization of Large-Size and Long-Timescale Molecular Dynamics Trajectories , 2011, ISVC.

[25]  Hh Bülthoff,et al.  Perception of shape from shading on a cloudy day , 1999 .

[26]  Klaus Schulten,et al.  Visualization of Energy Conversion Processes in a Light Harvesting Organelle at Atomic Detail , 2014 .

[27]  Klaus Schulten,et al.  Early experiences scaling VMD molecular visualization and analysis jobs on blue waters , 2013, 2013 Extreme Scaling Workshop (xsw 2013).

[28]  Neel Joshi,et al.  Lens Factory: Automatic Lens Generation Using Off-the-shelf Components , 2015, ArXiv.

[29]  Ivan Viola,et al.  Visualization of Biomolecular Structures: State of the Art , 2015, EuroVis.

[30]  Paul D. Bourke Synthetic Stereoscopic Panoramic Images , 2006, VSMM.

[31]  Gary J. Sullivan,et al.  Video Quality Evaluation Methodology and Verification Testing of HEVC Compression Performance , 2016, IEEE Transactions on Circuits and Systems for Video Technology.

[32]  Tim Weyrich,et al.  Eurographics Symposium on Point-based Graphics (2006) Gpu-based Ray-casting of Quadratic Surfaces , 2022 .

[33]  Klaus Schulten,et al.  Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing , 2016, Parallel Comput..

[34]  Philipp Slusallek,et al.  State of the Art in Interactive Ray Tracing , 2001, Eurographics.

[35]  Andreas Simon,et al.  Omnistereo for panoramic virtual environment display systems , 2004, IEEE Virtual Reality 2004.

[36]  Ned Greene,et al.  Environment Mapping and Other Applications of World Projections , 1986, IEEE Computer Graphics and Applications.

[37]  Leonard McMillan,et al.  Plenoptic Modeling: An Image-Based Rendering System , 2023 .

[38]  Peter-Pike J. Sloan,et al.  Interactive ray tracing , 2005, SIGGRAPH Courses.

[39]  Austin Robison Domain specific compilation in the NVIDIA OptiX ray tracing engine , 2011, DAMP '11.

[40]  M. Pharr,et al.  ispc: A SPMD compiler for high-performance CPU programming , 2012, 2012 Innovative Parallel Computing (InPar).

[41]  Don P. Mitchell,et al.  Generating antialiased images at low sampling densities , 1987, SIGGRAPH.

[42]  Robert L. Cook,et al.  Distributed ray tracing , 1998 .

[43]  Louis Bavoil,et al.  Multi-layer dual-resolution screen-space ambient occlusion , 2009, SIGGRAPH '09.

[44]  John E. Stone,et al.  OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems , 2010, Computing in Science & Engineering.

[45]  Kelly P. Gaither,et al.  Ray tracing and volume rendering large molecular data on multi-core and many-core architectures , 2013, UltraVis@SC.

[46]  Kelly P. Gaither,et al.  RBF Volume Ray Casting on Multicore and Manycore CPUs , 2014, Comput. Graph. Forum.

[47]  J. Painter,et al.  Antialiased ray tracing by adaptive progressive refinement , 1989, SIGGRAPH.

[48]  Paolo Cignoni,et al.  Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[49]  Philipp Slusallek,et al.  Real-Time Ray Tracing of Complex Molecular Scenes , 2010, 2010 14th International Conference Information Visualisation.

[50]  Andreas Dietrich,et al.  Spatial splits in bounding volume hierarchies , 2009, High Performance Graphics.

[51]  Klaus Schulten,et al.  Chemical Visualization of Human Pathogens : the Retroviral Capsids , 2015 .

[52]  John E. Stone,et al.  An efficient library for parallel ray tracing and animation , 1998 .

[53]  Shmuel Peleg,et al.  Stereo panorama with a single camera , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).