n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes

In this paper, we introduce first a natural generalization of the concept of Dirichlet process, providing significant examples. The second important tool concept is the n-covariation and the related n-variation. The n-variation of a continuous process and the n-covariation of a vector of continuous processes, are defined through a regularization procedure. We calculate explicitly the n-variation process, when it exists, of a martingale convolution. For processes having finite cubic variation, a basic stochastic calculus is developed. We prove an Ito formula and we study existence and uniqueness of the solution of a stochastic differential equation, in a symmetric-Stratonovich sense, with respect to those processes.

[1]  M. Zähle Integration with respect to fractal functions and stochastic calculus. I , 1998 .

[2]  Francesco Russo,et al.  The generalized covariation process and Ito formula , 1995 .

[3]  R. Dudley,et al.  Differentiability of Six Operators on Nonsmooth Functions and p-Variation , 1999 .

[4]  P. Vallois,et al.  Ito formula forC1-functions of semimartingales , 1996 .

[5]  Francesco Russo,et al.  Forward, backward and symmetric stochastic integration , 1993 .

[6]  Wolf Jochen An Itô formula for local dirichlet processes , 1997 .

[7]  C. Stricker,et al.  Componentwise and Vector Stochastic Integration with Respect to Certain Multi-Dimensional Continuous Local Martingales , 1995 .

[8]  J. Azéma,et al.  Séminaire de Probabilités XV 1979/80 , 1981 .

[9]  Terry Lyons Di erential equations driven by rough signals , 1998 .

[10]  J. Bertoin Les processus de dirichlet et tant qu'espace de banach , 1986 .

[11]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[12]  ORDINARY DIFFERENTIAL EQUATIONS WITH FRACTAL NOISE , 1999 .

[13]  Laure Coutin,et al.  Stochastic analysis, rough path analysis and fractional Brownian motions , 2002 .

[14]  P. Protter Stochastic integration and differential equations , 1990 .

[15]  Xavier Bardina,et al.  Weak convergence to the multiple Stratonovich integral , 2000 .

[16]  Gérard Ben Arous,et al.  Flots et series de Taylor stochastiques , 1989 .

[17]  O. Mazet,et al.  Stochastic calculus with respect to fractional Brownian motion , 2006 .

[18]  P. Protter Stochastic integration and differential equations : a new approach , 1990 .

[19]  J. Zabczyk,et al.  Continuity of Stochastic Convolutions , 2001 .

[20]  R. Bass,et al.  Extending the Wong-Zakai theorem to reversible Markov processes , 2002 .

[21]  F. Utzet,et al.  Stratonovich integral and trace , 1990 .

[22]  L. Coutin,et al.  Fractional Brownian Motion and the Markov Property , 1998, math/9809123.

[23]  Hans Föllmer,et al.  Calcul d'ito sans probabilites , 1981 .

[24]  D. Feyel,et al.  On Fractional Brownian Processes , 1999 .

[25]  Hani J. Doss,et al.  Liens entre equations di erentielles stochastiques et ordinaires , 1977 .

[26]  O. Mazet,et al.  Stochastic Calculus with Respect to Gaussian Processes , 2001 .

[27]  P. Vallois,et al.  Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H>=1/4 , 2003 .

[28]  Héctor J. Sussmann,et al.  An interpretation of stochastic differential equations as ordinary differential equations which depend on the sample point , 1977 .

[29]  L. Decreusefond,et al.  Stochastic Analysis of the Fractional Brownian Motion , 1999 .

[30]  P. Vallois,et al.  Stochastic calculus with respect to continuous finite quadratic variation processes , 2000 .