Gene Network Inference using Machine Learning and Graph Algorithms on Big Biomedical Data

Gene Network Inference using Machine Learning and Graph Algorithms on Big Biomedical Data

[1]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[2]  Ka Yee Yeung,et al.  Model-Based Clustering With Data Correction For Removing Artifacts In Gene Expression Data. , 2016, The annals of applied statistics.

[3]  Leroy Hood,et al.  Systems Biology and P4 Medicine: Past, Present, and Future , 2013, Rambam Maimonides medical journal.

[4]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[5]  Md. Islam,et al.  Comparative analysis of differential network modularity in tissue specific normal and cancer protein interaction networks , 2013, Journal of Clinical Bioinformatics.

[6]  Kai Wang,et al.  Characterizing Dynamic Changes in the Human Blood Transcriptional Network , 2010, PLoS Comput. Biol..

[7]  Avi Ma'ayan,et al.  ChEA2: Gene-Set Libraries from ChIP-X Experiments to Decode the Transcription Regulome , 2013, CD-ARES.

[8]  S. Horvath,et al.  Statistical Applications in Genetics and Molecular Biology , 2011 .

[9]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[10]  D. Madigan,et al.  Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .

[11]  T. Ideker,et al.  A decade of systems biology. , 2010, Annual review of cell and developmental biology.

[12]  Ziv Bar-Joseph,et al.  Multitask Learning of Signaling and Regulatory Networks with Application to Studying Human Response to Flu , 2014, PLoS Comput. Biol..

[13]  T. Golub,et al.  A method for high-throughput gene expression signature analysis , 2006, Genome Biology.

[14]  A. Califano,et al.  Dialogue on Reverse‐Engineering Assessment and Methods , 2007, Annals of the New York Academy of Sciences.

[15]  Korbinian Strimmer,et al.  Identifying periodically expressed transcripts in microarray time series data , 2008, Bioinform..

[16]  Adrian E. Raftery,et al.  Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data , 2005, Bioinform..

[17]  Roger E Bumgarner Overview of DNA microarrays: types, applications, and their future. , 2013, Current protocols in molecular biology.

[18]  A. Raftery Bayesian Model Selection in Social Research , 1995 .

[19]  Luis Ramirez,et al.  Big Data Analysis Using Modern Statistical and Machine Learning Methods in Medicine , 2014, International neurourology journal.

[20]  Matthias Dehmer,et al.  Comparing large graphs efficiently by margins of feature vectors , 2007, Appl. Math. Comput..

[21]  Vladimir Filkov,et al.  Identifying Gene Regulatory Networks from Gene Expression Data , 2005 .

[22]  S. Klamt,et al.  Reconstruction of large-scale regulatory networks based on perturbation graphs and transitive reduction: improved methods and their evaluation , 2013, BMC Systems Biology.

[23]  Nir Friedman,et al.  Inferring subnetworks from perturbed expression profiles , 2001, ISMB.

[24]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[25]  Andrew D. Rouillard,et al.  LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures , 2014, Nucleic Acids Res..

[26]  Kevin Murphy,et al.  Modelling Gene Expression Data using Dynamic Bayesian Networks , 2006 .

[27]  Adrian E. Raftery,et al.  Bayesian Model Averaging methods and R package for gene network construction , 2016 .

[28]  B. Palsson,et al.  The model organism as a system: integrating 'omics' data sets , 2006, Nature Reviews Molecular Cell Biology.

[29]  Roger E Bumgarner,et al.  Construction of regulatory networks using expression time-series data of a genotyped population , 2011, Proceedings of the National Academy of Sciences.

[30]  A. G. de la Fuente,et al.  From Knockouts to Networks: Establishing Direct Cause-Effect Relationships through Graph Analysis , 2010, PloS one.

[31]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[32]  E. Schadt Molecular networks as sensors and drivers of common human diseases , 2009, Nature.

[33]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[34]  Elena Pereira,et al.  Personalized Circulating Tumor DNA Biomarkers Dynamically Predict Treatment Response and Survival In Gynecologic Cancers , 2015, PloS one.

[35]  Diego di Bernardo,et al.  Inference of gene regulatory networks and compound mode of action from time course gene expression profiles , 2006, Bioinform..

[36]  Andrey Alexeyenko,et al.  Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis , 2014, BMC Bioinformatics.

[37]  Pooja Jain,et al.  The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae , 2005, Nucleic Acids Res..

[38]  Xin Chen,et al.  TRANSFAC: an integrated system for gene expression regulation , 2000, Nucleic Acids Res..

[39]  Stephan C. Schürer,et al.  Kinome-wide activity models from diverse high-quality datasets , 2013 .

[40]  Dario Floreano,et al.  Generating Realistic In Silico Gene Networks for Performance Assessment of Reverse Engineering Methods , 2009, J. Comput. Biol..

[41]  N. D. Clarke,et al.  Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges , 2010, PloS one.

[42]  Swarup Roy,et al.  Big Data Analytics in Bioinformatics: A Machine Learning Perspective , 2015, ArXiv.

[43]  D. Madigan,et al.  Bayesian Model Averaging for Linear Regression Models , 1997 .

[44]  Adrian E. Raftery,et al.  CyNetworkBMA: a Cytoscape app for inferring gene regulatory networks , 2015, Source Code for Biology and Medicine.

[45]  Avi Ma'ayan,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[46]  B. Haibe-Kains,et al.  Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks , 2014, Front. Cell Dev. Biol..

[47]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[48]  Wyeth W. Wasserman,et al.  JASPAR: an open-access database for eukaryotic transcription factor binding profiles , 2004, Nucleic Acids Res..

[49]  Adrian E. Raftery,et al.  Fast Bayesian inference for gene regulatory networks using ScanBMA , 2014, BMC Systems Biology.

[50]  John R Yates,et al.  Mass spectrometry in high-throughput proteomics: ready for the big time , 2010, Nature Methods.

[51]  M. Schroeder,et al.  Drug target prioritization by perturbed gene expression and network information , 2015, Scientific Reports.

[52]  T. Ideker,et al.  Differential network biology , 2012, Molecular systems biology.

[53]  S. Friend,et al.  A network view of disease and compound screening , 2009, Nature Reviews Drug Discovery.

[54]  Willem P. A. Ligtenberg,et al.  Efficient reconstruction of biological networks via transitive reduction on general purpose graphics processors , 2012, BMC Bioinformatics.

[55]  Patrik D'haeseleer,et al.  Linear Modeling of mRNA Expression Levels During CNS Development and Injury , 1998, Pacific Symposium on Biocomputing.

[56]  Julio Saez-Rodriguez,et al.  Crowdsourcing Network Inference: The DREAM Predictive Signaling Network Challenge , 2011, Science Signaling.

[57]  Jinwen Ma,et al.  Compound signature detection on LINCS L1000 big data. , 2015, Molecular bioSystems.

[58]  Adrian E. Raftery,et al.  Integrating external biological knowledge in the construction of regulatory networks from time-series expression data , 2012, BMC Systems Biology.

[59]  S. Gabriel,et al.  Advances in understanding cancer genomes through second-generation sequencing , 2010, Nature Reviews Genetics.

[60]  Ziv Bar-Joseph,et al.  STEM: a tool for the analysis of short time series gene expression data , 2006, BMC Bioinformatics.

[61]  D. Floreano,et al.  Revealing strengths and weaknesses of methods for gene network inference , 2010, Proceedings of the National Academy of Sciences.

[62]  P. Brown,et al.  Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.