Combining Argument Mining Techniques

In this paper, we look at three different methods of extracting the argumentative structure from a piece of natural language text. These methods cover linguistic features, changes in the topic being discussed and a supervised machine learning approach to identify the components of argumentation schemes, patterns of human reasoning which have been detailed extensively in philosophy and psychology. For each of these approaches we achieve results comparable to those previously reported, whilst at the same time achieving a more detailed argument structure. Finally, we use the results from these individual techniques to apply them in combination, further improving the argument structure identification.

[1]  Patrick Saint-Dizier,et al.  Some Facets of Argument Mining for Opinion Analysis , 2012, COMMA.

[2]  D. Walton Argumentation Schemes for Presumptive Reasoning , 1995 .

[3]  Iryna Gurevych,et al.  Identifying Argumentative Discourse Structures in Persuasive Essays , 2014, EMNLP.

[4]  Trevor J. M. Bench-Capon,et al.  Semi-Automated Argumentative Analysis of Online Product Reviews , 2012, COMMA.

[5]  Marie-Francine Moens,et al.  Automatic detection of arguments in legal texts , 2007, ICAIL.

[6]  Floris Bex,et al.  Implementing the argument web , 2013, Commun. ACM.

[7]  J. Pollock Cognitive Carpentry: A Blueprint for How to Build a Person , 1995 .

[8]  Tim van Gelder,et al.  The rationale for Rationale , 2007 .

[9]  Bing Liu,et al.  Sentiment Analysis and Subjectivity , 2010, Handbook of Natural Language Processing.

[10]  Chris Reed,et al.  On Argumentation Schemes and the Natural Classification of Arguments , 2004 .

[11]  Bonnie L. Webber,et al.  Discourse structure and language technology , 2011, Natural Language Engineering.

[12]  Douglas Walton,et al.  Argument Mining by Applying Argumentation Schemes , 2012 .

[13]  Alistair Knott,et al.  A data-driven methodology for motivating a set of coherence relations , 1996 .

[14]  Henry Prakken,et al.  The Carneades model of argument and burden of proof , 2007, Artif. Intell..

[15]  Manfred Stede,et al.  From Argument Diagrams to Argumentation Mining in Texts: A Survey , 2013, Int. J. Cogn. Informatics Nat. Intell..

[16]  Manfred Kienpointner Alltagslogik : Struktur und Funktion von Argumentationsmustern , 1992 .

[17]  Ch. Perelman,et al.  The New Rhetoric: A Treatise on Argumentation , 1971 .

[18]  Chris Reed,et al.  Araucaria: Software for Argument Analysis, Diagramming and Representation , 2004, Int. J. Artif. Intell. Tools.

[19]  Marie-Francine Moens,et al.  Argumentation mining: the detection, classification and structure of arguments in text , 2009, ICAIL.

[20]  Floris Bex,et al.  AIFdb: Infrastructure for the Argument Web , 2012, COMMA.

[21]  Graeme Hirst,et al.  Classifying arguments by scheme , 2011, ACL.

[22]  Marie-Francine Moens,et al.  Language Resources for Studying Argument , 2008, LREC.

[23]  Chris Reed,et al.  Argumentation Schemes , 2008 .

[24]  Wayne Grennan,et al.  Informal Logic: Issues and Techniques , 1997 .

[25]  Chris Reed,et al.  Mining Arguments From 19th Century Philosophical Texts Using Topic Based Modelling , 2014, ArgMining@ACL.