Nonlinear Shrinkage of Undecimated DWT for Noise Reduction and Data Compression
暂无分享,去创建一个
C. Burrus | J. E. Odegard | M. Lang | Hua Guo
[1] Hervé Carfantan,et al. Time-invariant orthonormal wavelet representations , 1996, IEEE Trans. Signal Process..
[2] I. Johnstone,et al. Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .
[3] David L. Donoho,et al. De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.
[4] C. Sidney Burrus,et al. Nonlinear Processing of a Shift Invariant DWT for Noise Reduction , 1995 .
[5] B. Silverman,et al. The Stationary Wavelet Transform and some Statistical Applications , 1995 .
[6] John J. Benedetto,et al. Subband coding and noise reduction in multiresolution analysis frames , 1994, Optics & Photonics.
[7] D. L. Donoho,et al. Ideal spacial adaptation via wavelet shrinkage , 1994 .
[8] D. Donoho. Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .
[9] David L. Donoho,et al. Nonlinear Wavelet Methods for Recovery of Signals, Densities, and Spectra from Indirect and Noisy Da , 1993 .
[10] Mark J. Shensa,et al. The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..
[11] Stéphane Mallat,et al. Zero-crossings of a wavelet transform , 1991, IEEE Trans. Inf. Theory.
[12] K. H. Barratt. Digital Coding of Waveforms , 1985 .
[13] N. S. Barnett,et al. Private communication , 1969 .
[14] G. Beylkin,et al. On the representation of operators in bases of compactly supported wavelets , 1992 .