Real-time spectral radiance estimation of hemispherical clear skies with machine learned regression models

Abstract Whole sky spectral radiance distribution measurements are difficult and expensive to obtain, yet important for real-time applications of radiative transfer, building performance, physically based rendering, and photovoltaic panel alignment. This work presents a validated machine learning approach to predicting spectral radiance distributions (350–1780 nm) across the entire hemispherical sky, using regression models trained on high dynamic range (HDR) imagery and spectroradiometer measurements. First, we present and evaluate measured, engineered, and computed machine learning features used to train regression models. Next, we perform experiments comparing regular and HDR imagery, sky sample color models, and spectral resolution. Finally, we present a tool that reconstructs a spectral radiance distribution for every single point of a hemispherical clear sky image given only a photograph of the sky and its capture timestamp. We recommend this tool for building performance and spectral rendering pipelines. The spectral radiance of 81 sample points per test sky is estimated to within 7.5% RMSD overall at 1 nm resolution. Spectral radiance distributions are validated against libRadtran and spectroradiometer measurements. Our entire sky dataset and processing software is open source and freely available on our project website.

[1]  Brent Burley,et al.  The Design and Evolution of Disney’s Hyperion Renderer , 2018, ACM Trans. Graph..

[2]  Donald P. Greenberg,et al.  Sustain: An experimental test bed for building energy simulation , 2013 .

[3]  Hironobu Iwabuchi,et al.  Cloud Discrimination from Sky Images Using a Clear-Sky Index , 2016 .

[4]  Robert B. Fisher,et al.  Hypermedia image processing reference , 1996 .

[5]  Isao Murata,et al.  Estimation of spectral distribution of sky radiance using a commercial digital camera. , 2016, Applied optics.

[6]  A Cazorla,et al.  Development of a sky imager for cloud cover assessment. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  J. Michalsky,et al.  All-weather model for sky luminance distribution—Preliminary configuration and validation , 1993 .

[8]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[9]  Paul J. Littlefair,et al.  The luminance distribution of an average sky , 1981 .

[10]  B. Mayer Radiative transfer in the cloudy atmosphere , 2009 .

[11]  Jun Yang,et al.  A Hybrid Thresholding Algorithm for Cloud Detection on Ground-Based Color Images , 2011 .

[12]  Saso Dzeroski,et al.  Tree ensembles for predicting structured outputs , 2013, Pattern Recognit..

[13]  Hans-Peter Seidel,et al.  Physically-based simulation of twilight phenomena , 2005, TOGS.

[14]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[15]  Kamaruzzaman Sopian,et al.  Solar attenuation by aerosols: An overview , 2012 .

[16]  John William Strutt,et al.  XV. On the light from the sky, its polarization and colour , 1871 .

[17]  Nebojša Jakica,et al.  State-of-the-art review of solar design tools and methods for assessing daylighting and solar potential for building-integrated photovoltaics , 2018 .

[18]  K. Stamnes,et al.  A reliable and efficient two-stream algorithm for spherical radiative transfer: Documentation of accuracy in realistic layered media , 1995 .

[19]  Eric Bruneton,et al.  A Qualitative and Quantitative Evaluation of 8 Clear Sky Models , 2016, IEEE Transactions on Visualization and Computer Graphics.

[20]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[21]  Christopher J. Smith,et al.  An all-sky radiative transfer method to predict optimal tilt and azimuth angle of a solar collector , 2016 .

[22]  W. D. Wright A re-determination of the trichromatic coefficients of the spectral colours , 1929 .

[23]  J. Bartel,et al.  On possible shape isomers in the Pt-Ra region of nuclei , 2017 .

[24]  Miroslav Kocifaj,et al.  Unified model of radiance patterns under arbitrary sky conditions , 2015 .

[25]  Alexander Wilkie,et al.  An analytic model for full spectral sky-dome radiance , 2012, ACM Trans. Graph..

[26]  Bernhard Mayer,et al.  Efficient unbiased variance reduction techniques for Monte Carlo simulations of radiative transfer in cloudy atmospheres: The solution , 2011 .

[27]  M. Wendisch,et al.  IPRT polarized radiative transfer model intercomparison project – Phase A , 2015, 1901.01813.

[28]  A. Robertson The CIE 1976 Color-Difference Formulae , 1977 .

[29]  Yoshinori Dobashi,et al.  Display of clouds taking into account multiple anisotropic scattering and sky light , 1996, SIGGRAPH.

[30]  Lucas Alados-Arboledas,et al.  Using a Sky Imager for aerosol characterization , 2008 .

[31]  Daniel E. Fisher,et al.  EnergyPlus: creating a new-generation building energy simulation program , 2001 .

[32]  Norio Igawa,et al.  All Sky Model as a standard sky for the simulation of daylit environment , 2001 .

[33]  I. Reda,et al.  Solar position algorithm for solar radiation applications , 2004 .

[34]  Stéphane Grieu,et al.  Modelling the clear-sky intensity distribution using a sky imager , 2015 .

[35]  Raymond L Lee,et al.  Measuring overcast colors with all-sky imaging. , 2008, Applied optics.

[36]  M. Iqbal An introduction to solar radiation , 1983 .

[37]  Arve Kylling,et al.  The libRadtran software package for radiative transfer calculations (version 2.0.1) , 2015 .

[38]  G. I. Pokrowski Über einen scheinbaren Mie-Effekt und seine mögliche Rolle in der Atmosphärenoptik , 1929 .

[39]  Zhengrong Li,et al.  A new anisotropic diffuse radiation model , 2015 .

[40]  Julien Eynard,et al.  Towards the intrahour forecasting of direct normal irradiance using sky-imaging data , 2018, Heliyon.

[41]  Javier Hernández-Andrés,et al.  Using a trichromatic CCD camera for spectral skylight estimation. , 2008, Applied optics.

[42]  J. Kinney,et al.  Comparison of scotopic, mesopic, and photopic spectral sensitivity curves. , 1958, Journal of the Optical Society of America.

[43]  Takehiko Aso,et al.  Sensitivity calibration of digital colour cameras for auroral imaging. , 2008, Optics express.

[44]  Robert F. Cahalan,et al.  The I3RC - Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres , 2005 .

[45]  Jan Hensen,et al.  Building Performance Simulation for Design and Operation , 2019 .

[46]  Donald P. Greenberg,et al.  A framework for the experimental comparison of solar and skydome illumination , 2014, ACM Trans. Graph..

[47]  A. Arking,et al.  Retrieval of Cloud Cover Parameters from Multispectral Satellite Images , 1985 .

[48]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[49]  Gregory J. Ward,et al.  The RADIANCE lighting simulation and rendering system , 1994, SIGGRAPH.

[50]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[51]  J. Hansen,et al.  A parameterization for the absorption of solar radiation in the earth's atmosphere , 1974 .

[52]  A R Smith,et al.  Color Gamut Transformation Pairs , 1978 .

[53]  Tatsuya Yokota,et al.  Benchmark results in vector atmospheric radiative transfer , 2010 .

[54]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[55]  Alvy Ray Smith,et al.  Color gamut transform pairs , 1978, SIGGRAPH.

[56]  Andrew Jones,et al.  Direct HDR capture of the sun and sky , 2004, AFRIGRAPH '04.

[57]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[58]  Haym Hirsh,et al.  Adding numbers to text classification , 2003, CIKM '03.

[59]  W. Cornette,et al.  Physically reasonable analytic expression for the single-scattering phase function: errata. , 1992, Applied optics.

[60]  Declan Butler,et al.  Architecture: Architects of a low-energy future , 2008, Nature.

[61]  Richard Kittler,et al.  Some qualities of scattering functions defining sky radiance distributions , 1994 .

[62]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[63]  Miroslav Kocifaj,et al.  Angular distribution of scattered radiation under broken cloud arrays: An approximation of successive orders of scattering , 2012 .

[64]  Yutaka Hayashi,et al.  A study on the estimation of the relative frequency of occurrences of the Clear Sky, the Intermediate Sky and the Overcast Sky in Japan , 1985 .

[65]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[66]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[67]  Catherine Gautier,et al.  SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere. , 1998 .

[68]  David Laroze,et al.  Downwelling and upwelling radiance distributions sampled under cloudless conditions in Antarctica. , 2013, Applied optics.

[69]  Murtaza Haider,et al.  Beyond the hype: Big data concepts, methods, and analytics , 2015, Int. J. Inf. Manag..

[70]  Jim R. Parker,et al.  Algorithms for image processing and computer vision , 1996 .

[71]  Thomas Bashford-Rogers,et al.  A Machine-Learning-Driven Sky Model , 2017, IEEE Computer Graphics and Applications.

[72]  Chong Ho Alex Yu Exploratory Data Analysis , 2017 .

[73]  K. Stamnes,et al.  A new spherical model for computing the radiation field available for photolysis and heating at twilight , 1991 .

[74]  R. Dennis Cook,et al.  Cross-Validation of Regression Models , 1984 .

[75]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[76]  Nancy Chinchor,et al.  The Statistical Significance of the MUC-4 Results , 1992, MUC.

[77]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[78]  Miroslav Kocifaj,et al.  Sky luminance/radiance model with multiple scattering effect , 2009 .

[79]  William S. Cooper,et al.  On selecting a measure of retrieval effectiveness , 1973, J. Am. Soc. Inf. Sci..