THE PHYSICS OF THE “HEARTBEAT” STATE OF GRS 1915+105

We present the first detailed phase-resolved spectral analysis of a joint Chandra High Energy Transmission Grating Spectrometer and Rossi X-ray Timing Explorer observation of the rho variability class in the microquasar GRS 1915+105. The rho cycle displays a high-amplitude, double-peaked flare that recurs roughly every 50 s, and is sometimes referred to as the "heartbeat" oscillation. The spectral and timing properties of the oscillation are consistent with the radiation pressure instability and the evolution of a local Eddington limit in the inner disk. We exploit strong variations in the X-ray continuum, iron emission lines, and the accretion disk wind to probe the accretion geometry over nearly six orders of magnitude in distance from the black hole. At small scales (1-10 R_g), we detect a burst of bremsstrahlung emission that appears to occur when a portion of the inner accretion disk evaporates due to radiation pressure. Jet activity, as inferred from the appearance of a short X-ray hard state, seems to be limited to times near minimum luminosity, with a duty cycle of ~10%. On larger scales (1e5-1e6 R_g) we use detailed photoionization arguments to track the relationship between the fast X-ray variability and the accretion disk wind. For the first time, we are able to show that changes in the broadband X-ray spectrum produce changes in the structure and density of the accretion disk wind on timescales as short as 5 seconds. These results clearly establish a causal link between the X-ray oscillations and the disk wind and therefore support the existence of a disk-jet-wind connection. Furthermore, our analysis shows that the mass loss rate in the wind may be sufficient to cause long-term oscillations in the accretion rate, leading to state transitions in GRS 1915+105.

[1]  Jean H. Swank,et al.  Rapid Bursts from GRS 1915+105 with RXTE , 1996, astro-ph/9706134.

[2]  M. iller,et al.  EVIDENCE FOR A LINK BETWEEN FE Kα EMISSION LINE STRENGTH AND QPO PHASE IN A BLACK HOLE , 2008 .

[3]  K. Yamaoka,et al.  GRS 1915+105 IN “SOFT STATE”: NATURE OF ACCRETION DISK WIND AND ORIGIN OF X-RAY EMISSION , 2009, 0901.1982.

[4]  Mark L. Schattenburg,et al.  The Chandra High‐Energy Transmission Grating: Design, Fabrication, Ground Calibration, and 5 Years in Flight , 2005, astro-ph/0507035.

[5]  A. R. King,et al.  An Unstable Central Disk in the Superluminal Black Hole X-Ray Binary GRS 1915+105 , 1997, astro-ph/9702048.

[6]  J. Fukue Critical Accretion Disk , 2004 .

[7]  P. Casella,et al.  A transient low-frequency QPO from the black hole binary GRS 1915+105 , 2007, 0710.3030.

[8]  R. Taam,et al.  Variable-Frequency Quasi-periodic Oscillations from the Galactic Microquasar GRS 1915+105 , 1999, astro-ph/9901050.

[9]  J. Greiner,et al.  An unusually massive stellar black hole in the Galaxy , 2001, Nature.

[10]  Douglas M. Eardley,et al.  Black Holes in Binary Systems: Instability of Disk Accretion , 1974 .

[11]  University of Leicester,et al.  The 1989 May outburst of the soft X‐ray transient GS 2023+338 (V404 Cyg) , 1999 .

[12]  T. Dotani,et al.  ASCA OBSERVATIONS OF THE ABSORPTION LINE FEATURES FROM THE SUPERLUMINAL JET SOURCE GRS 1915)105 , 2000, astro-ph/0003237.

[13]  C. McKee,et al.  Compton heated winds and coronae above accretion disks. I. Dynamics , 1983 .

[14]  J. Homan,et al.  SPECTRAL STATES OF XTE J1701 − 462: LINK BETWEEN Z AND ATOLL SOURCES , 2008, 0901.0031.

[15]  G. Pooley,et al.  The variable radio emission from GRS 1915 + 105 , 1997, astro-ph/9708171.

[16]  A. King,et al.  Superhumps, resonances and accretion discs , 1991 .

[17]  Nrl,et al.  Radio Emission and the Timing Properties of the Hard X-Ray State of GRS 1915+105 , 2001, astro-ph/0104067.

[18]  Jochen Greiner,et al.  RXTE Observations of QPOs in the Black Hole Candidate GRS 1915+105 , 1997 .

[19]  Merate,et al.  Evidence for a relativistic iron line in GRS 1915+105 , 2002, astro-ph/0203185.

[20]  A. R. King,et al.  A unified model for the spectral variability in grs 1915+105 , 1997 .

[21]  Greenbelt,et al.  On the Role of the Ultraviolet and X-Ray Radiation in Driving a Disk Wind in X-Ray Binaries , 2001, Astrophysical Journal.

[22]  S. Bianchi,et al.  VARIABLE PARTIAL COVERING AND A RELATIVISTIC IRON LINE IN NGC 1365 , 2009, 0901.4809.

[23]  The optical long ‘period’ of LMC X-3 , 2001, astro-ph/0107475.

[24]  A. Janiuk,et al.  Time‐delays between the soft and hard X‐ray bands in GRS 1915 + 105 , 2004, astro-ph/0409671.

[25]  The 590 day long-term periodicity of the microquasar GRS 1915+105 , 2003, astro-ph/0305106.

[26]  U. Michigan,et al.  ON THE PROPERTIES OF THERMAL DISK WINDS IN X-RAY TRANSIENT SOURCES: A CASE STUDY OF GRO J1655−40 , 2010, The Astrophysical Journal.

[27]  E. Salpeter,et al.  The interaction of X-ray sources with optically thin environments. , 1969 .

[28]  W. N. Johnson,et al.  Broad-band γ-ray and X-ray spectra of NGC 4151 and their implications for physical processes and geometry , 1996 .

[29]  Ronald A. Remillard,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[30]  T. Belloni,et al.  GRS 1915+105 and the Disc-Jet Coupling in Accreting Black Hole Systems , 2004 .

[31]  R. P. Fender,et al.  MERLIN observations of relativistic ejections from GRS 1915+105 , 1998, astro-ph/9812150.

[32]  John Raymond,et al.  The magnetic nature of disk accretion onto black holes , 2006, Nature.

[33]  M. Tagger,et al.  MAGNETIC FLOODS: A SCENARIO FOR THE VARIABILITY OF THE MICROQUASAR GRS 1915+105 , 2004, astro-ph/0401539.

[34]  R. W. Nelson,et al.  Evidence for a Disk-Jet Interaction in the Microquasar GRS 1915+105 , 1997 .

[35]  U. Cambridge,et al.  The Accretion Disk Wind in the Black Hole GRO J1655–40 , 2008, 0802.2026.

[36]  T. Belloni,et al.  Characterizing a new class of variability in GRS 1915+105 with simultaneous INTEGRAL/RXTE observations , 2005 .

[37]  T. Belloni,et al.  Hard X‐ray states and radio emission in GRS 1915+105 , 2002 .

[38]  CEA-Saclay,et al.  SUZAKU OBSERVATION OF GRS 1915+105: EVOLUTION OF ACCRETION DISK STRUCTURE DURING LIMIT-CYCLE OSCILLATION , 2010, 1003.0317.

[39]  M. Reynolds,et al.  CHANDRA GRATING SPECTROSCOPY OF THE Be/X-RAY BINARY 1A 0535+262 , 2010, 1009.2240.

[40]  M. Feroci,et al.  The complex behaviour of the microquasar GRS 1915+105 in the ρ class observed with BeppoSAX - I. Timing analysis , 2010, 1001.4406.

[41]  Boulder,et al.  Soft-to-Hard State Transitions in LMC X-3 , 2000, astro-ph/0005489.

[42]  M. Sako,et al.  Resolving the Effects of Resonant X-Ray Line Scattering in Centaurus X-3 with Chandra , 2003 .

[43]  C. Brocksopp,et al.  Rapid infrared flares in GRS 1915+105: evidence for infrared synchrotron emission , 1997, astro-ph/9707317.

[44]  J. Wilms,et al.  Absorption Of X-rays In The Interstellar Medium , 2000, astro-ph/0008425.

[45]  N. Brandt,et al.  Variability of the X-Ray P Cygni Line Profiles from Circinus X-1 near Zero Phase , 2001, astro-ph/0112483.

[46]  Claudio Mendoza,et al.  SPECTRUM SYNTHESIS MODELING OF THE X-RAY SPECTRUM OF GRO J1655-40 TAKEN DURING THE 2005 OUTBURST , 2009, 0905.4206.

[47]  H. Bethe,et al.  A theory of gamma-ray bursts , 2000, astro-ph/0003361.

[48]  U. Cambridge,et al.  MEASURING THE SPIN OF GRS 1915+105 WITH RELATIVISTIC DISK REFLECTION , 2009, 0909.5383.

[49]  J. Neilsen,et al.  Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105 , 2009, Nature.

[50]  MIT,et al.  Evidence for a Link between Fe Kα Emission-Line Strength and Quasi-periodic Oscillation Phase in a Black Hole , 2005, astro-ph/0501371.

[51]  D. Steeghs,et al.  Simultaneous Chandra and RXTE Spectroscopy of the Microquasar H1743–322: Clues to Disk Wind and Jet Formation from a Variable Ionized Outflow , 2004, astro-ph/0406272.

[52]  C. Reynolds,et al.  Fluorescent iron lines as a probe of astrophysical black hole systems , 2003 .

[53]  R. Narayan,et al.  Multitemperature Blackbody Spectra of Thin Accretion Disks with and without a Zero-Torque Inner Boundary Condition , 2004, astro-ph/0408209.

[54]  Timothy R. Kallman,et al.  The XSTAR Atomic Database , 2001 .

[55]  D. A. Verner,et al.  Atomic data for astrophysics. II. New analytic fits for photoionization cross sections of atoms and ions , 1996 .

[56]  D. Proga Winds from Accretion Disks Driven by Radiation and Magnetocentrifugal Force , 2000, astro-ph/0002441.

[57]  T. Belloni The Jet Paradigm , 2010 .

[58]  S. Migliari,et al.  Evidence for local mass accretion rate variations in the disc of GRS 1915+105 , 2003, astro-ph/0303664.

[59]  M. J. Page,et al.  XMM-Newton RGS spectroscopy of LMC X-3 , 2003 .

[60]  The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105 , 2006, astro-ph/0606076.

[61]  I. Mirabel,et al.  Sources of Relativistic Jets in the Galaxy , 1999, astro-ph/9902062.

[62]  G. Matt,et al.  Iron Kα lines from X-ray photoionized accretion discs , 1993 .

[63]  Jon M. Miller,et al.  EVIDENCE OF A WARM ABSORBER THAT VARIES WITH QUASI-PERIODIC OSCILLATION PHASE IN THE ACTIVE GALACTIC NUCLEUS RE J1034+396 , 2010 .

[64]  A. Abian,et al.  CHANDRA/HETGS SPECTROSCOPY OF THE GALACTIC BLACK HOLE GX 33 9−4: A RELATIVISTIC IRON EMISSION LINE AND EVIDENCE FOR A SEYFERT-LIKE WARM ABSORBER , 2008 .

[65]  O. Vilhu,et al.  Two-Phase Modeling of the Rings in the RXTE Two-Color Diagram of GRS 1915+105 , 1998, astro-ph/9808307.

[66]  R. Fender Jets from X-ray binaries , 2001, astro-ph/0303339.

[67]  A. C. Fabian,et al.  SUZAKU OBSERVATIONS OF THE BLACK HOLE H1743−322 IN OUTBURST , 2010, 1003.3417.

[68]  D. Liedahl The X-Ray Spectral Properties of Photoionized Plasmas and Transient Plasmas , 1999 .

[69]  R. Narayan,et al.  MEASURING BLACK HOLE SPIN VIA THE X-RAY CONTINUUM-FITTING METHOD: BEYOND THE THERMAL DOMINANT STATE , 2009, 0907.2920.

[70]  G. Branduardi‐Raymont High Resolution X-ray Spectroscopy with XMM-Newton and Chandra Proceedings of the October 2002 MSSL workshop , 2002 .

[71]  J. E. Pringle,et al.  Self-induced warping of accretion discs , 1996 .

[72]  Nicholas E. White,et al.  X-ray fluorescence from the inner disc in Cygnus X-1 , 1989 .

[73]  N. Schulz,et al.  A Chandra Spectroscopic Survey of Persistent Black Hole Candidates , 2002, astro-ph/0207599.

[74]  D. Lin,et al.  Compton-heated winds and coronae above accretion disks. II - Instability and oscillations , 1986 .

[75]  S. Nayakshin,et al.  Time-dependent disk models for the microquasar GRS 1915 + 105 , 1999, astro-ph/9905371.

[76]  C. Done,et al.  GRS 1915+105: the brightest Galactic black hole , 2004 .

[77]  S. Eikenberry,et al.  Does Low-Frequency X-Ray QPO Behavior in GRS 1915+105 Influence Subsequent X-Ray and Infrared Evolution? , 2005, astro-ph/0510061.