Role of n-ZnO Layer on the Improvement of Interfacial Properties in ZnO/InGaN p-i-n Solar Cells
暂无分享,去创建一个
Z. Quan | Shitao Liu | Li Wang
[1] W. Doolittle,et al. Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells , 2014 .
[2] J. Brault,et al. Growth of Ga- and N-polar GaN layers on O face ZnO substrates by molecular beam epitaxy , 2014 .
[3] Yong-Seok Choi,et al. n‐ZnO/i‐InGaN/p‐GaN heterostructure for solar cell application , 2013 .
[4] Akio Yamamoto,et al. InGaN Solar Cells: Present State of the Art and Important Challenges , 2012, IEEE Journal of Photovoltaics.
[5] Y. Kuo,et al. Numerical Study of the Effects of Hetero-Interfaces, Polarization Charges, and Step-Graded Interlayers on the Photovoltaic Properties of (0001) Face GaN/InGaN p-i-n Solar Cell , 2012, IEEE Journal of Quantum Electronics.
[6] D. H. Kim,et al. Hybrid Nitride-ZnO Solar Cells , 2011 .
[7] Yen-Kuang Kuo,et al. Numerical Study on the Influence of Piezoelectric Polarization on the Performance of p-on-n (0001)-Face GaN/InGaN p-i-n Solar Cells , 2011, IEEE Electron Device Letters.
[8] A. Holt,et al. Design analysis of ZnO/cSi heterojunction solar cell , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.
[9] H. Fujioka,et al. Investigation on the conversion efficiency of InGaN solar cells fabricated on GaN and ZnO substrates , 2010 .
[10] Wladek Walukiewicz,et al. Finite element simulations of compositionally graded InGaN solar cells , 2010 .
[11] Hongxing Jiang,et al. Electrical and optical properties of p-type InGaN , 2009 .
[12] Junqiao Wu,et al. When group-III nitrides go infrared: New properties and perspectives , 2009 .
[13] Umesh K. Mishra,et al. High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap , 2008 .
[14] Theodore D. Moustakas,et al. The role of dislocations as nonradiative recombination centers in InGaN quantum wells , 2008 .
[15] Ian T. Ferguson,et al. Design and characterization of GaN∕InGaN solar cells , 2007 .
[16] Carlos Algora,et al. III‐V concentrator solar cell reliability prediction based on quantitative LED reliability data , 2007 .
[17] W. Schaff,et al. Temperature dependence of carrier lifetimes in InN , 2005 .
[18] Eugene E. Haller,et al. Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system , 2003 .
[19] Yoshiki Saito,et al. RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys , 2003 .
[20] Eugene E. Haller,et al. Unusual properties of the fundamental band gap of InN , 2002 .
[21] Oliver Ambacher,et al. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures , 2002 .
[22] Jerry R. Meyer,et al. Band parameters for III–V compound semiconductors and their alloys , 2001 .
[23] David C. Look,et al. Recent Advances in ZnO Materials and Devices , 2001 .
[24] A. Carlo,et al. Carrier screening and polarization fields in nitride-based heterostructure devices , 1999 .
[25] Peter M. Asbeck,et al. Spontaneous and piezoelectric polarization effects in III-V nitride heterostructures , 1999 .
[26] T. C. McGill,et al. Minority carrier diffusion length and lifetime in GaN , 1998 .
[27] W. M. Haynes. CRC Handbook of Chemistry and Physics , 1990 .
[28] Charles Howard Henry,et al. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .