Role of n-ZnO Layer on the Improvement of Interfacial Properties in ZnO/InGaN p-i-n Solar Cells

[1]  W. Doolittle,et al.  Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells , 2014 .

[2]  J. Brault,et al.  Growth of Ga- and N-polar GaN layers on O face ZnO substrates by molecular beam epitaxy , 2014 .

[3]  Yong-Seok Choi,et al.  n‐ZnO/i‐InGaN/p‐GaN heterostructure for solar cell application , 2013 .

[4]  Akio Yamamoto,et al.  InGaN Solar Cells: Present State of the Art and Important Challenges , 2012, IEEE Journal of Photovoltaics.

[5]  Y. Kuo,et al.  Numerical Study of the Effects of Hetero-Interfaces, Polarization Charges, and Step-Graded Interlayers on the Photovoltaic Properties of (0001) Face GaN/InGaN p-i-n Solar Cell , 2012, IEEE Journal of Quantum Electronics.

[6]  D. H. Kim,et al.  Hybrid Nitride-ZnO Solar Cells , 2011 .

[7]  Yen-Kuang Kuo,et al.  Numerical Study on the Influence of Piezoelectric Polarization on the Performance of p-on-n (0001)-Face GaN/InGaN p-i-n Solar Cells , 2011, IEEE Electron Device Letters.

[8]  A. Holt,et al.  Design analysis of ZnO/cSi heterojunction solar cell , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[9]  H. Fujioka,et al.  Investigation on the conversion efficiency of InGaN solar cells fabricated on GaN and ZnO substrates , 2010 .

[10]  Wladek Walukiewicz,et al.  Finite element simulations of compositionally graded InGaN solar cells , 2010 .

[11]  Hongxing Jiang,et al.  Electrical and optical properties of p-type InGaN , 2009 .

[12]  Junqiao Wu,et al.  When group-III nitrides go infrared: New properties and perspectives , 2009 .

[13]  Umesh K. Mishra,et al.  High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap , 2008 .

[14]  Theodore D. Moustakas,et al.  The role of dislocations as nonradiative recombination centers in InGaN quantum wells , 2008 .

[15]  Ian T. Ferguson,et al.  Design and characterization of GaN∕InGaN solar cells , 2007 .

[16]  Carlos Algora,et al.  III‐V concentrator solar cell reliability prediction based on quantitative LED reliability data , 2007 .

[17]  W. Schaff,et al.  Temperature dependence of carrier lifetimes in InN , 2005 .

[18]  Eugene E. Haller,et al.  Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system , 2003 .

[19]  Yoshiki Saito,et al.  RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys , 2003 .

[20]  Eugene E. Haller,et al.  Unusual properties of the fundamental band gap of InN , 2002 .

[21]  Oliver Ambacher,et al.  Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures , 2002 .

[22]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[23]  David C. Look,et al.  Recent Advances in ZnO Materials and Devices , 2001 .

[24]  A. Carlo,et al.  Carrier screening and polarization fields in nitride-based heterostructure devices , 1999 .

[25]  Peter M. Asbeck,et al.  Spontaneous and piezoelectric polarization effects in III-V nitride heterostructures , 1999 .

[26]  T. C. McGill,et al.  Minority carrier diffusion length and lifetime in GaN , 1998 .

[27]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[28]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .