Chaotic Dynamics in Nonequilibrium Statistical Mechanics

[1]  Pierre Gaspard,et al.  Erratum: Time-Reversed Dynamical Entropy and Irreversibility in Markovian Random Processes , 2004 .

[2]  T. Tél,et al.  Chaotic Dynamics: An Introduction Based on Classical Mechanics , 2006 .

[3]  P. Gaspard,et al.  Microscopic Chaos and Reaction-Diffusion Processes in the Periodic Lorentz Gas , 2000 .

[4]  Debra J. Searles,et al.  The Fluctuation Theorem , 2002 .

[5]  R. Lindsay,et al.  The Conceptual Foundations of the Statistical Approach in Mechanics , 1959 .

[6]  Mark F. Demers,et al.  Deterministic Models of the Simplest Chemical Reactions , 2005 .

[7]  V. Donnay Elliptic islands in generalized Sinai billiards , 1996, Ergodic Theory and Dynamical Systems.

[8]  C. Beck,et al.  Thermodynamics of chaotic systems : an introduction , 1993 .

[9]  D. Ruelle Locating resonances for AxiomA dynamical systems , 1986 .

[10]  Manuel Gadella,et al.  Dirac Kets, Gamow Vectors and Gel'fand triplets : the rigged Hilbert space formulation of quantum mechanics : lectures in mathematical physics at the University of Texas at Austin , 1989 .

[11]  J. Lebowitz,et al.  A Gallavotti–Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics , 1998, cond-mat/9811220.

[12]  R. Fox Entropy evolution for the Baker map. , 1998, Chaos.

[13]  Astrid S. de Wijn,et al.  Goldstone modes in Lyapunov spectra of hard sphere systems , 2003, nlin/0312051.

[14]  G. Gallavotti An Introduction to Chaos in Nonequilibrium Statistical Mechanics, by Jay R. Dorfman , 2001 .

[15]  G. Uhlenbeck,et al.  Studies in statistical mechanics , 1962 .

[16]  Mark Pollicott,et al.  On the rate of mixing of Axiom A flows , 1985 .

[17]  P. Walters Introduction to Ergodic Theory , 1977 .

[18]  J. Vollmer Chaos, spatial extension, transport, and non-equilibrium thermodynamics , 2002 .

[19]  G. Eyink,et al.  Steady-state electrical conduction in the periodic Lorentz gas , 1993, chao-dyn/9302003.

[20]  G. Nicolis,et al.  Transport properties, Lyapunov exponents, and entropy per unit time. , 1990, Physical review letters.

[21]  C. Dellago,et al.  Largest Lyapunov Exponent for Many Particle Systems at Low Densities , 1997, chao-dyn/9710020.

[22]  J. Vollmer,et al.  Entropy Balance, Multibaker Maps, and the Dynamics of the Lorentz Gas , 2000 .

[23]  Denis J. Evans,et al.  Field-dependent conductivity and diffusion in a two-dimensional Lorentz gas , 1993 .

[24]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: PRINCIPAL CLASSES OF ASYMPTOTIC TOPOLOGICAL INVARIANTS , 1995 .

[25]  D. Ruelle Smooth Dynamics and New Theoretical Ideas in Nonequilibrium Statistical Mechanics , 1998, chao-dyn/9812032.

[26]  I︠a︡. G. Sinai Dynamical systems : collection of papers , 1991 .

[27]  R. Mazo,et al.  Brownian Motion: Fluctuations, Dynamics, and Applications , 2002 .

[28]  William G. Hoover,et al.  Time Reversibility, Computer Simulation, And Chaos , 1999 .

[29]  Proof of the Ergodic Hypothesis for Typical Hard Ball Systems , 2002, math/0210280.

[30]  S. V. Fomin,et al.  Ergodic Theory , 1982 .

[31]  Debra J. Searles,et al.  Note on the Kaplan–Yorke Dimension and Linear Transport Coefficients , 1999 .

[32]  D. Ruelle,et al.  Resonances of chaotic dynamical systems. , 1986, Physical review letters.

[33]  H. Stöckmann,et al.  Quantum Chaos: An Introduction , 1999 .

[34]  F. Haake Quantum signatures of chaos , 1991 .

[35]  Denis J. Evans,et al.  Statistical Mechanics of Nonequilibrium Liquids (2nd ed) , 2008 .

[36]  The approach to thermal equilibrium in quantized chaotic systems , 1998, cond-mat/9809360.

[37]  Dorfman,et al.  Lyapunov exponents and Kolmogorov-Sinai entropy for the Lorentz gas at low densities. , 1994, Physical review letters.

[38]  R van Zon,et al.  Extended heat-fluctuation theorems for a system with deterministic and stochastic forces. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  H. Posch,et al.  Lyapunov instability of dense Lennard-Jones fluids. , 1988, Physical review. A, General physics.

[40]  J. R. Dorfman,et al.  An analytical construction of the SRB measures for Baker-type maps. , 1998, Chaos.

[41]  Hoover,et al.  Second-law irreversibility and phase-space dimensionality loss from time-reversible nonequilibrium steady-state Lyapunov spectra. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[43]  G. W. Ford,et al.  Lectures in statistical mechanics , 1963 .

[44]  Gary P. Morriss,et al.  Statistical Mechanics of Nonequilibrium Liquids , 2008 .

[45]  E. Helfand,et al.  Transport Coefficients from Dissipation in a Canonical Ensemble , 1960 .

[46]  P. Gaspard r-adic one-dimensional maps and the Euler summation formula , 1992 .

[47]  J. Lebowitz,et al.  Hard Ball Systems and the Lorentz Gas , 2000 .

[48]  Elliptic islands appearing in near-ergodic flows , 1998 .

[49]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[50]  Fractals and dynamical chaos in a random 2D Lorentz gas with sinks , 2003, nlin/0309051.

[51]  Jorge Kurchan,et al.  Fluctuation theorem for stochastic dynamics , 1998 .

[52]  N. N. Bogolyubov,et al.  Problems of a Dynamical Theory in Statistical Physics , 1959 .

[53]  Giulio Casati,et al.  Quantum chaos : between order and disorder , 1995 .

[54]  Entropy production of diffusion in spatially periodic deterministic systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  P. Gaspard Hamiltonian dynamics, nanosystems, and nonequilibrium statistical mechanics , 2006, cond-mat/0603382.

[56]  Morriss,et al.  Proof of Lyapunov exponent pairing for systems at constant kinetic energy. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[57]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[58]  Dorfman,et al.  Chaotic scattering theory of transport and reaction-rate coefficients. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[59]  P. Gaspard,et al.  Chaotic scattering theory, thermodynamic formalism, and transport coefficients. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[60]  Carl P. Dettmann,et al.  Microscopic Chaos and Diffusion , 2000, nlin/0001062.

[61]  M. Berry Regular and Irregular Motion , 2008, Hamiltonian Dynamical Systems.

[62]  Giovanni Gallavotti,et al.  Statistical Mechanics: A Short Treatise , 1999 .

[63]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[64]  Pierre Gaspard,et al.  Chaos, Scattering and Statistical Mechanics , 1998 .

[65]  Remark on the (non)convergence of ensemble densities in dynamical systems. , 1998, Chaos.

[66]  Construction of the Jordan basis for the Baker map. , 1997, Chaos.

[67]  E. Cohen,et al.  Dynamical ensembles in stationary states , 1995, chao-dyn/9501015.

[68]  Baras,et al.  Chaotic scattering and diffusion in the Lorentz gas. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  Rainer Klages,et al.  Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics , 2006 .

[70]  H. Beijeren,et al.  Chaotic properties of dilute two- and three-dimensional random Lorentz gases. II. Open systems. , 1998, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  William G. Hoover,et al.  Nonequilibrium molecular dynamics via Gauss's principle of least constraint , 1983 .

[72]  N. Kampen,et al.  Ten theorems about quantum mechanical measurements , 1988 .

[73]  H. Posch,et al.  Lyapunov instability in a system of hard disks in equilibrium and nonequilibrium steady states. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.