Coarse-Graining Parameterization and Multiscale Simulation of Hierarchical Systems. Part II: Case Studies

[1]  Zhiping Xu,et al.  Alzheimer's abeta(1-40) amyloid fibrils feature size-dependent mechanical properties. , 2010, Biophysical journal.

[2]  M. Buehler,et al.  Energy landscape, structure and rate effects on strength properties of alpha-helical proteins , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  Yuye Tang,et al.  Deformation micromechanisms of collagen fibrils under uniaxial tension , 2009, Journal of The Royal Society Interface.

[4]  Markus J. Buehler,et al.  Hierarchical Structure Controls Nanomechanical Properties of Vimentin Intermediate Filaments , 2009, PloS one.

[5]  Steven W. Cranford,et al.  Mechanomutable carbon nanotube arrays , 2009 .

[6]  A. Redaelli,et al.  Molecular and mesoscale mechanisms of osteogenesis imperfecta disease in collagen fibrils. , 2009, Biophysical journal.

[7]  Markus J. Buehler,et al.  Alpha-Helical Protein Networks Are Self-Protective and Flaw-Tolerant , 2009, PloS one.

[8]  Alberto Redaelli,et al.  Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. , 2009, Journal of the mechanical behavior of biomedical materials.

[9]  D. Bedrov,et al.  The influence of polymer architecture on the assembly of poly(ethylene oxide) grafted C60 fullerene clusters in aqueous solution: a molecular dynamics simulation study. , 2009, Physical chemistry chemical physics : PCCP.

[10]  Alberto Redaelli,et al.  Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains , 2008, Protein science : a publication of the Protein Society.

[11]  Markus J. Buehler,et al.  Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture , 2008 .

[12]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[13]  K. V. Van Vliet,et al.  Extending Bell's model: how force transducer stiffness alters measured unbinding forces and kinetics of molecular complexes. , 2008, Biophysical journal.

[14]  Markus J. Buehler,et al.  Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains , 2007, Proceedings of the National Academy of Sciences.

[15]  Markus J. Buehler,et al.  Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization , 2007 .

[16]  Markus J. Buehler,et al.  Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: atomistic and continuum studies , 2007, Journal of Materials Science.

[17]  Robert F. Richards,et al.  Electrostatic shielding in patterned carbon nanotube field emission arrays , 2007 .

[18]  Markus J. Buehler,et al.  Mesoscale modeling of mechanics of carbon nanotubes: Self-assembly, self-folding, and fracture , 2006 .

[19]  M. Boyce,et al.  Mechanics of Biomacromolecular Networks Containing Folded Domains , 2006 .

[20]  Hendrik Dietz,et al.  Anisotropic deformation response of single protein molecules , 2006, Proceedings of the National Academy of Sciences.

[21]  Markus J. Buehler,et al.  Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture, and self-assembly , 2006 .

[22]  Roger D Kamm,et al.  A coarse-grained model for force-induced protein deformation and kinetics. , 2006, Biophysical journal.

[23]  Huajian Gao,et al.  Dynamical fracture instabilities due to local hyperelasticity at crack tips , 2006, Nature.

[24]  David A Tirrell,et al.  Protein engineering approaches to biomaterials design. , 2005, Current opinion in biotechnology.

[25]  Ernesto Raúl Caffarena,et al.  Elastic properties, Young's modulus determination and structural stability of the tropocollagen molecule: a computational study by steered molecular dynamics. , 2005, Journal of biomechanics.

[26]  D. Bedrov,et al.  Molecular dynamics simulation study of the role of evenly spaced poly(ethylene oxide) tethers on the aggregation of C60 fullerenes in water. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[27]  Arnab Bhattacharjee,et al.  Collagen Structure: The Madras Triple Helix and the Current Scenario , 2005, IUBMB life.

[28]  D. Bedrov,et al.  Repulsive solvent-induced interaction between C60 fullerenes in water. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Kai-Nan An,et al.  Stretching type II collagen with optical tweezers. , 2004, Journal of biomechanics.

[30]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[31]  Huajian Gao,et al.  Hyperelasticity governs dynamic fracture at a critical length scale , 2003, Nature.

[32]  J. Robertson,et al.  Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation , 2003 .

[33]  Richard A. Vaia,et al.  Multicomponent Interposed Carbon Nanotube Micropatterns by Region-Specific Contact Transfer and Self-Assembling , 2003 .

[34]  L. Mahadevan,et al.  Kinks, rings, and rackets in filamentous structures , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Sharon C. Glotzer,et al.  Tethered Nano Building Blocks: Toward a Conceptual Framework for Nanoparticle Self-Assembly , 2003 .

[36]  H. Pilcher Alzheimer's abnormal brain proteins glow , 2003 .

[37]  F. Glorieux,et al.  Osteogenesis imperfecta--clinical and molecular diversity. , 2003, European cells & materials.

[38]  Petros Koumoutsakos,et al.  On the Water−Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes , 2003 .

[39]  Oleg Borodin,et al.  A revised quantum chemistry‐based potential for poly(ethylene oxide) and its oligomers in aqueous solution , 2002, J. Comput. Chem..

[40]  Kiyoshi Kanie,et al.  Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals , 2002, Nature.

[41]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[42]  Seiji Takeda,et al.  Insight into conformational changes of a single α-helix peptide molecule through stiffness measurements , 2001 .

[43]  C. Burger,et al.  Spherical bilayer vesicles of fullerene-based surfactants in water: a laser light scattering study. , 2001, Science.

[44]  Hui-Ming Cheng,et al.  Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes , 2000 .

[45]  J. Ramshaw,et al.  Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Mark A. Lantz,et al.  Stretching the α-helix: a direct measure of the hydrogen-bond energy of a single-peptide molecule , 1999 .

[47]  P. Fratzl,et al.  Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. , 1997, The Journal of clinical investigation.

[48]  E. Evans,et al.  Dynamic strength of molecular adhesion bonds. , 1997, Biophysical journal.

[49]  L. Girifalco,et al.  Molecular Properties of C60 in the Gas and Solid Phases. , 1992 .

[50]  D. Sillence,et al.  Genetic heterogeneity in osteogenesis imperfecta. , 1979, Journal of medical genetics.

[51]  G. I. Bell Models for the specific adhesion of cells to cells. , 1978, Science.

[52]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[53]  Markus J. Buehler,et al.  Atomistically Informed Mesoscale Model of Alpha-Helical Protein Domains , 2009 .

[54]  M. Buehler Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. , 2008, Journal of the mechanical behavior of biomedical materials.

[55]  Markus J Buehler,et al.  Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Huajian Gao,et al.  Self-folding and unfolding of carbon nanotubes , 2006 .

[57]  I. Wilkie,et al.  Mutable collagenous tissue: overview and biotechnological perspective. , 2005, Progress in molecular and subcellular biology.

[58]  Kai-Nan An,et al.  Flexibility of type I collagen and mechanical property of connective tissue. , 2004, Biorheology.

[59]  K. B. K. Teob,et al.  Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation , 2003 .

[60]  E. Evans Probing the relation between force--lifetime--and chemistry in single molecular bonds. , 2001, Annual review of biophysics and biomolecular structure.

[61]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[62]  L. Girifalco Molecular properties of fullerene in the gas and solid phases , 1992 .

[63]  S. Timoshenko,et al.  Elements Of Strength Of Materials , 1935 .

[64]  P. Esposito,et al.  Osteogenesis Imperfecta. , 1928, Proceedings of the Royal Society of Medicine.