How to Determine the Order-Up-To Level when Demand is Gamma Distributed with Unknown Parameters
暂无分享,去创建一个
[1] S. Karlin,et al. Studies in the Mathematical Theory of Inventory and Production, by K.J. Arrow, S. Karlin, H. Scarf with contributions by M.J. Beckmann, J. Gessford, R.F. Muth. Stanford, California, Stanford University Press, 1958, X p.340p., $ 8.75. , 1959, Bulletin de l'Institut de recherches économiques et sociales.
[2] T. A. Burgin,et al. The Gamma Distribution and Inventory Control , 1975 .
[3] Dimitris Bertsimas,et al. A Robust Optimization Approach to Inventory Theory , 2006, Oper. Res..
[4] R.M.J. Heuts,et al. Modelling (s, Q) inventory systems: Parametric versus non-parametric approximations for the lead time demand distribution , 1992 .
[5] Anne B. Koehler,et al. Forecasting for Inventory Control with Exponential Smoothing , 2002 .
[6] Edward A. Silver,et al. Biased selection of the inventory reorder point when demand parameters are statistically estimated , 1987 .
[7] Edward A. Silver,et al. The Cost Effects of Statistical Sampling in Selecting the Reorder Point in a Common Inventory Model , 1986 .
[8] Robert H. Hayes,et al. Statistical Estimation Problems in Inventory Control , 1969 .
[9] J. Boylan,et al. On the stock control performance of intermittent demand estimators , 2006 .
[10] Anders Segerstedt,et al. Inventory control with variation in lead times, especially when demand is intermittent , 1994 .
[11] L. Strijbosch,et al. Assessing the Effects of Using Demand Parameters Estimates in Inventory Control , 2006 .
[12] Quey-Jen Yeh. A practical implementation of gamma distribution to the reordering decision of an inventory control problem , 1997 .
[13] R. Watson,et al. The Effects of Demand-Forecast Fluctuations on Customer Service and Inventory Cost When Demand is Lumpy , 1987 .
[14] Jing-Sheng Song,et al. Inventory Planning with Forecast Updates: Approximate Solutions and Cost Error Bounds , 2006, Oper. Res..