H in α-Zr and in zirconium hydrides: solubility, effect on dimensional changes, and the role of defects

Structural, thermodynamic and elastic properties of the hydrogen-zirconium system including all major hydrides are studied from first principles. Interstitial hydrogen atoms occupy preferentially tetrahedral sites. The calculations show that a single vacancy in α-Zr can trap up to nine hydrogen atoms. Self-interstitial Zr atoms attract hydrogen to a lesser extent. Accumulation of hydrogen atoms near self-interstitials may become a nucleation site for hydrides. By including the temperature-dependent terms of the free energy based on ab initio calculations, hydrogen adsorption isotherms are computed and shown to be in good agreement with experimental data. The solubility of hydrogen decreases in Zr under compressive strain. The volume dependence on hydrogen concentration is similar for hydrogen in solution and in hydrides. The bulk modulus increases with hydrogen concentration from 96 to 132 GPa.

[1]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[2]  Griessen Heats of solution and lattice-expansion and trapping energies of hydrogen in transition metals. , 1988, Physical review. B, Condensed matter.

[3]  H. Numakura,et al.  Low-frequency internal friction study of Zr-H and Zr-D alloys , 1988 .

[4]  Mattsson,et al.  H diffusion on Ni(100): A quantum Monte Carlo simulation. , 1993, Physical review letters.

[5]  L. T. Lloyd,et al.  Lattice Parameters, Thermal Expansions, and Grüneisen Coefficients of Zirconium, 4.2 to 1130°K , 1966 .

[6]  Reaction energetics and crystal structure of Li 4 BN 3 H 10 from first principles , 2006, cond-mat/0607687.

[7]  G. Ackland Embrittlement and the Bistable Crystal Structure of Zirconium Hydride , 1998 .

[8]  L. Legras,et al.  Identification and characterization of a new zirconium hydride , 2008, Journal of microscopy.

[9]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[10]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[11]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[12]  A. Pasturel,et al.  Full-potential calculations using the generalized-gradient corrections : structural properties of Ti, Zr and Hf under compression , 1998 .

[13]  Structure and Thermodynamical Properties of Zirconium hydrides from first-principle , 2012 .

[14]  W. Wolf,et al.  First-principles investigations forYH3(YD3): Energetics, electric-field gradients, and optical properties , 2002 .

[15]  G. Carpenter The dilatational misfit of zirconium hydrides precipitated in zirconium , 1973 .

[16]  Shinsuke Yamanaka,et al.  Study on the hydrogen solubility in zirconium alloys , 1997 .

[17]  E. Wimmer,et al.  Effect of alloying elements on the properties of Zr and the Zr–H system , 2014 .

[18]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[19]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[20]  Alexandre Legris,et al.  Hexagonal-based ordered phases in H-Zr , 2009 .

[21]  Sweden.,et al.  Structure and Thermodynamical Properties of Zirconium hydrides from first-principle , 2012, 1211.0858.

[22]  Rongshan Wang,et al.  First-Principles Study of Different Polymorphs of Crystalline Zirconium Hydride , 2010 .

[23]  Christophe Domain,et al.  Atomic-scale Ab-initio study of the Zr-H system: I. Bulk properties , 2002 .

[24]  P. A. Burr,et al.  Hydrogen accommodation in Zr second phase particles: Implications for H pick-up and hydriding of Zircaloy-2 and Zircaloy-4 , 2013, 1307.7616.

[25]  C. Domain,et al.  Atomic-scale ab initio study of the Zr–H system: II. Interaction of H with plane defects and mechanical properties , 2004 .

[26]  K. Barraclough,et al.  Some observations on the phase transformations in zirconium hydrides , 1970 .

[27]  J. Abriata,et al.  Solubility of hydrogen in Zircaloy-4: irradiation induced increase and thermal recovery , 2002 .

[28]  L. Hector,et al.  Hydrogen site energetics in LaNi5Hn and LaCo5Hn: Toward predicting hydrides , 2004 .

[29]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[30]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[31]  C. Shull,et al.  The crystal structure of thorium and zirconium dihydrides by X‐ray and neutron diffraction , 1952 .

[32]  D. Ross,et al.  Determination of the hydrogen site occupation in the α phase of zirconium hydride and in the α and β phases of titanium hydride by inelastic neutron scattering , 1982 .

[33]  Alireza Saeed-Akbari,et al.  Nitrogen in chromium–manganese stainless steels: a review on the evaluation of stacking fault energy by computational thermodynamics , 2013, Science and technology of advanced materials.

[34]  N. Soneda,et al.  Ab Initio Electronic Structure Study of α-Zirconium and Hydrogen , 2008 .

[35]  I. Abrikosov,et al.  First-principles study of vacancy-hydrogen interaction in Pd , 2009 .

[36]  P. Olsson,et al.  Ab initio thermodynamics of zirconium hydrides and deuterides , 2014 .

[37]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[38]  S. S. Sidhu,et al.  NEUTRON AND X-RAY DIFFRACTION STUDIES OF NONSTOICHIOMETRIC METAL HYDRIDES , 1963 .

[39]  Ping Zhang,et al.  First-principles study of ground state properties of ZrH2 , 2011 .

[40]  G. Ackland,et al.  Development of an interatomic potential for the simulation of phase transformations in zirconium , 2007 .

[41]  G. L. Paul,et al.  Location of hydrogen in α-zirconium , 1977 .

[42]  Hendrik W Brinks,et al.  Integrated experimental-theoretical investigation of the Na-Li-Al-H system. , 2007, Inorganic chemistry.

[43]  J. J. Kearns TERMINAL SOLUBILITY AND PARTITIONING OF HYDROGEN IN THE ALPHA PHASE OF ZIRCONIUM, ZIRCALOY-2, AND ZIRCALOY-4. , 1967 .

[44]  W. Wolf,et al.  Temperature-dependent diffusion coefficients from ab initio computations: Hydrogen, deuterium, and tritium in nickel , 2008 .

[45]  Farkas,et al.  Embedded-atom interatomic potentials for hydrogen in metals and intermetallic alloys. , 1996, Physical review. B, Condensed matter.