A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline

In the era of large photometric surveys, the importance of automated and accurate classification is rapidly increasing. Specifically, the separation of resolved and unresolved sources in astronomical imaging is a critical initial step for a wide array of studies, ranging from Galactic science to large scale structure and cosmology. Here, we present our method to construct a large, deep catalog of point sources utilizing Pan-STARRS1 (PS1) 3$\pi$ survey data, which consists of $\sim$3$\times10^9$ sources with $m\lesssim23.5\,$mag. We develop a supervised machine-learning methodology, using the random forest (RF) algorithm, to construct the PS1 morphology model. We train the model using $\sim$5$\times10^4$ PS1 sources with HST COSMOS morphological classifications and assess its performance using $\sim$4$\times10^6$ sources with Sloan Digital Sky Survey (SDSS) spectra and $\sim$2$\times10^8$ \textit{Gaia} sources. We construct 11 "white flux" features, which combine PS1 flux and shape measurements across 5 filters, to increase the signal-to-noise ratio relative to any individual filter. The RF model is compared to 3 alternative models, including the SDSS and PS1 photometric classification models, and we find that the RF model performs best. By number the PS1 catalog is dominated by faint sources ($m\gtrsim21\,$mag), and in this regime the RF model significantly outperforms the SDSS and PS1 models. For time-domain surveys, identifying unresolved sources is crucial for inferring the Galactic or extragalactic origin of new transients. We have classified $\sim$1.5$\times10^9$ sources using the RF model, and these results are used within the Zwicky Transient Facility real-time pipeline to automatically reject stellar sources from the extragalactic alert stream.

[1]  R. Kron Photometry of a complete sample of faint galaxies. , 1980 .

[2]  A. John Mallinckrodt,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1993 .

[3]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[4]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[5]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[6]  Naoki Yasuda,et al.  Galaxy Number Counts from the Sloan Digital Sky Survey Commissioning Data , 2001, astro-ph/0105545.

[7]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[8]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[9]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[10]  Walter A. Siegmund,et al.  Design of the Pan‐STARRS telescopes , 2004 .

[11]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[12]  A. Rau,et al.  The Nature of the Deep Lens Survey Fast Transients , 2006, astro-ph/0604343.

[13]  Fnal,et al.  The Field of Streams: Sagittarius and its Siblings , 2006, astro-ph/0605025.

[14]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[15]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[16]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[17]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[18]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions , 2011, 1111.0166.

[19]  E. C. Vasconcellos,et al.  DECISION TREE CLASSIFIERS FOR STAR/GALAXY SEPARATION , 2010, 1011.1951.

[20]  Adam D. Myers,et al.  Ameliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III , 2011, 1105.2320.

[21]  A. M. S. Oderberg,et al.  Ultra-Luminous Supernovae as a New Probe of the Interstellar Medium in Distant Galaxies , 2012 .

[22]  T. Grav,et al.  PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY , 2012, 1201.2208.

[23]  Nathaniel R. Butler,et al.  CONSTRUCTION OF A CALIBRATED PROBABILISTIC CLASSIFICATION CATALOG: APPLICATION TO 50k VARIABLE SOURCES IN THE ALL-SKY AUTOMATED SURVEY , 2012, 1204.4180.

[24]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[25]  S. Smartt,et al.  ULTRALUMINOUS SUPERNOVAE AS A NEW PROBE OF THE INTERSTELLAR MEDIUM IN DISTANT GALAXIES , 2012, 1206.4050.

[26]  Adam D. Myers,et al.  THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE , 2011, 1105.0606.

[27]  Adam D. Myers,et al.  Sloan Digital Sky Survey III photometric quasar clustering: probing the initial conditions of the Universe , 2013, 1311.2597.

[28]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[29]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[30]  M. Wainwright,et al.  Using machine learning for discovery in synoptic survey imaging data , 2012, 1209.3775.

[31]  R. Kotak,et al.  Machine learning for transient discovery in Pan-STARRS1 difference imaging , 2015, 1501.05470.

[32]  R. Giovanelli,et al.  THE OPTICAL LUMINOSITY FUNCTION OF VOID GALAXIES IN THE SDSS AND ALFALFA SURVEYS , 2015, 1508.04199.

[33]  University of Cambridge,et al.  The VLT Survey Telescope ATLAS , 2015, 1502.05432.

[34]  Eugene Magnier,et al.  A THREE-DIMENSIONAL MAP OF MILKY WAY DUST , 2015, 1507.01005.

[35]  B. Yanny,et al.  Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey , 2013, 1306.5236.

[36]  R. C. Wolf,et al.  AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY , 2015, 1504.02936.

[37]  P. A. Price,et al.  The Pan-STARRS Data-processing System , 2016, The Astrophysical Journal Supplement Series.

[38]  P. A. Price,et al.  Pan-STARRS Pixel Analysis: Source Detection and Characterization , 2016, The Astrophysical Journal Supplement Series.

[39]  Umaa Rebbapragada,et al.  iPTF SEARCH FOR AN OPTICAL COUNTERPART TO GRAVITATIONAL-WAVE TRANSIENT GW150914 , 2016, 1602.08764.

[40]  Gaia Collaboration,et al.  The Gaia mission , 2016, 1609.04153.

[41]  P. Marrese,et al.  Gaia Data Release 1. Cross-match with external catalogues - Algorithm and results , 2017, 1710.06739.

[42]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[43]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[44]  Caltech,et al.  PREPARING FOR ADVANCED LIGO: A STAR–GALAXY SEPARATION CATALOG FOR THE PALOMAR TRANSIENT FACTORY , 2017, 1703.07356.

[45]  D. Gerdes,et al.  How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets? , 2017, 1710.05845.

[46]  David W. Hogg,et al.  Using machine learning to explore the long-term evolution of GRS 1915+105 , 2017 .

[47]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[48]  J. J. González-Vidal,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[49]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[50]  J. Frieman,et al.  Star-galaxy classification in the Dark Energy Survey Y1 dataset , 2018, Monthly Notices of the Royal Astronomical Society.