A new method for embedding predefined interfaces in finite elements

Abstract A new method for embedding predefined interfaces within an arbitrary finite element mesh is proposed and demonstrated. The algorithm for generating these predefined surfaces is detailed and subsequently applied to, but by no means limited to, masonry problems to demonstrate its efficacy. Within a given finite element, the initiation of fracture or slippage may occur simultaneously along a predefined interface and in the bulk of the element. In order to determine which surface is critical, we feature a criterion which aids in determining the correct surface upon which all further slippage due to fracture will occur. This interface method is cast in the framework of an enhanced strain finite element which is capable of capturing softening along an embedded strong discontinuity.

[1]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[2]  R. Regueiro,et al.  Bifurcation analysis for a rate‐sensitive, non‐associative, three‐invariant, isotropic/kinematic hardening cap plasticity model for geomaterials: Part I. Small strain , 2011 .

[3]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[4]  F. Armero,et al.  An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids , 1996 .

[5]  Philippe H. Geubelle,et al.  An interface‐enriched generalized FEM for problems with discontinuous gradient fields , 2012 .

[6]  J. Rice Localization of plastic deformation , 1976 .

[7]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[8]  F. Armero,et al.  Three‐dimensional finite elements with embedded strong discontinuities to model material failure in the infinitesimal range , 2012 .

[9]  Arif Masud,et al.  A Discontinuous/continuous Galerkin method for modeling of interphase damage in fibrous composite systems , 2013 .

[10]  Alberto Corigliano,et al.  Damage analysis of interlaminar fracture specimens , 1995 .

[11]  H. W. Reinhardt,et al.  Experimental determination of crack softening characteristics of normalweight and lightweight concrete , 1986 .

[12]  J. Rice,et al.  CONDITIONS FOR THE LOCALIZATION OF DEFORMATION IN PRESSURE-SENSITIVE DILATANT MATERIALS , 1975 .

[13]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[14]  Alfredo Edmundo Huespe,et al.  Continuum approach to material failure in strong discontinuity settings , 2004 .

[15]  Craig D. Foster,et al.  On numerical aspects of different updating schedules for tracking fracture path in strain localization modeling , 2016 .

[16]  Arif Masud,et al.  Finite strain primal interface formulation with consistently evolving stabilization , 2015 .

[17]  C. Duarte,et al.  Analysis and applications of a generalized finite element method with global-local enrichment functions , 2008 .

[18]  P. Camanho,et al.  Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials , 2003 .

[19]  A. Jesus,et al.  Strength prediction of single- and double-lap joints by standard and extended finite element modelling , 2011 .

[20]  R. Borja Assumed enhanced strain and the extended finite element methods: A unification of concepts , 2008 .

[21]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[22]  Jian-Ying Wu,et al.  Extended embedded finite elements with continuous displacement jumps for the modeling of localized failure in solids , 2015 .

[23]  Soheil Mohammadi,et al.  Delamination analysis of composites by new orthotropic bimaterial extended finite element method , 2011 .

[24]  Richard A. Regueiro,et al.  Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuity , 2001 .

[25]  Richard A. Regueiro,et al.  Embedded strong discontinuity finite elements for fractured geomaterials with variable friction , 2007 .

[26]  Carlos Armando Duarte,et al.  A high‐order generalized FEM for through‐the‐thickness branched cracks , 2007 .

[27]  Mario M. Attard,et al.  Experimental and numerical investigation of masonry under three-point bending (in-plane) , 2009 .

[28]  Peter Hansbo,et al.  A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes , 2005, Numerische Mathematik.

[29]  Ignacio Carol,et al.  NORMAL/SHEAR CRACKING MODEL: APPLICATION TO DISCRETE CRACK ANALYSIS , 1997 .

[30]  M. Ortiz,et al.  A finite element method for localized failure analysis , 1987 .

[31]  Milan Jirásek,et al.  Comparative study on finite elements with embedded discontinuities , 2000 .

[32]  Christer Ericson,et al.  Real-Time Collision Detection (The Morgan Kaufmann Series in Interactive 3-D Technology) (The Morgan Kaufmann Series in Interactive 3D Technology) , 2004 .

[33]  R. Hill Acceleration waves in solids , 1962 .

[34]  Richard A. Regueiro,et al.  A finite element model of localized deformation in frictional materials taking a strong discontinuity approach , 1999 .

[35]  M. Ortiz,et al.  A recursive-faulting model of distributed damage in confined brittle materials , 2006 .

[36]  M. Elices,et al.  A general bilinear fit for the softening curve of concrete , 1994 .

[37]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[38]  Ugo Andreaus Failure Criteria for Masonry Panels under In-Plane Loading , 1996 .

[39]  Arif Masud,et al.  Interfacial stabilization at finite strains for weak and strong discontinuities in multi-constituent materials , 2018 .

[40]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[41]  Bram Vandoren,et al.  Mesoscopic modelling of masonry using weak and strong discontinuities , 2013 .

[42]  David A. Weed,et al.  Numerical simulation of mixed mode (I and II) fracture behavior of pre-cracked rock using the strong discontinuity approach , 2016 .

[43]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[44]  René de Borst,et al.  Mesh-independent discrete numerical representations of cohesive-zone models , 2006 .

[45]  Yoshiaki Ida,et al.  Cohesive force across the tip of a longitudinal‐shear crack and Griffith's specific surface energy , 1972 .

[46]  Richard A. Regueiro,et al.  Strain localization in frictional materials exhibiting displacement jumps , 2001 .

[47]  P. Camanho,et al.  Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials , 2002 .

[48]  Ronaldo I. Borja,et al.  Continuum mathematical modeling of slip weakening in geological systems , 2005 .

[49]  J. Dolbow,et al.  Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .

[50]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[51]  Isaac Harari,et al.  Analysis of an efficient finite element method for embedded interface problems , 2010 .

[52]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[53]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[54]  Stephen R Hallett,et al.  Cohesive zone length in numerical simulations of composite delamination , 2008 .

[55]  Angelo Simone,et al.  The Discontinuity‐Enriched Finite Element Method , 2017 .

[56]  WaiChing Sun,et al.  Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow , 2018 .

[58]  Ted Belytschko,et al.  An extended finite element method with higher-order elements for curved cracks , 2003 .

[59]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[60]  E. Lorentz,et al.  A mixed interface finite element for cohesive zone models , 2008 .

[61]  M. Ayatollahi,et al.  Size and Geometry Effects on Rock Fracture Toughness: Mode I Fracture , 2014, Rock Mechanics and Rock Engineering.

[62]  Conchur O Bradaigh,et al.  An XFEM-based methodology for fatigue delamination and permeability of composites , 2014 .

[63]  Zhenjun Yang,et al.  A heterogeneous cohesive model for quasi-brittle materials considering spatially varying random fracture properties , 2008 .

[64]  A. Huespe,et al.  From continuum mechanics to fracture mechanics: the strong discontinuity approach , 2002 .

[65]  Ronaldo I. Borja,et al.  A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation , 2000 .

[66]  Ning Hu,et al.  XFEM simulation of delamination in composite laminates , 2016 .

[67]  René de Borst,et al.  Computational modelling of delamination , 2006 .

[68]  Isaac Harari,et al.  A bubble‐stabilized finite element method for Dirichlet constraints on embedded interfaces , 2007 .

[69]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[70]  A. Huespe,et al.  Stability and robustness issues in numerical modeling of material failure with the strong discontinuity approach , 2006 .

[71]  Dae-Jin Kim,et al.  Analysis and improvements of global–local enrichments for the Generalized Finite Element Method , 2012 .

[72]  T. Dewers,et al.  Fracture propagation in Indiana Limestone interpreted via linear softening cohesive fracture model , 2015 .

[73]  Philippe H. Geubelle,et al.  An adaptive interface‐enriched generalized FEM for the treatment of problems with curved interfaces , 2015 .

[74]  Paulo B. Lourenço,et al.  CONTINUUM MODEL FOR MASONRY: PARAMETER ESTIMATION AND VALIDATION , 1998 .

[75]  Haim Waisman,et al.  Progressive delamination analysis of composite materials using XFEM and a discrete damage zone model , 2015 .

[76]  Arif Masud,et al.  On the algorithmic and implementational aspects of a Discontinuous Galerkin method at finite strains , 2015, Comput. Math. Appl..