QUANTUM ZERO-ERROR CAPACITY

We define a new kind of quantum channel capacity by extending the concept of zero-error capacity for a noisy quantum channel. The necessary requirement for which a quantum channel has zero-error capacity greater than zero is given. Finally, we point out some directions on how to calculate the zero-error capacity of such channels.

[1]  Peter W. Shor,et al.  Quantum Information Theory , 1998, IEEE Trans. Inf. Theory.

[2]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[3]  F. Assis,et al.  Quantum Zero‐Error Capacity and HSW Capacity , 2004 .

[4]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[5]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[6]  Paolo Zanardi Stabilizing quantum information , 2000 .

[7]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[8]  Alon Orlitsky,et al.  Zero-Error Information Theory , 1998, IEEE Trans. Inf. Theory.

[9]  David W Kribs,et al.  Method to find quantum noiseless subsystems. , 2006, Physical review letters.

[10]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[11]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[12]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[13]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[14]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[15]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.