Completely Bounded and Ideal Norms of Multiplication Operators and Schur Multipliers

We estimate the completely bounded norms, the completely p-nuclear norms, and the completely p-summing norms of certain multiplication operators and Schur multipliers.

[1]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[2]  Marius Junge,et al.  Embedding of the operator space OH and the logarithmic ‘little Grothendieck inequality’ , 2003, math/0410235.

[3]  D. Garling Diagonal mappings between sequence spaces , 1974 .

[4]  B. Simon Trace ideals and their applications , 1979 .

[5]  Gilles Pisier,et al.  Grothendieck’s theorem for operator spaces , 2001, math/0108205.

[6]  Summing norms of identities between unitary ideals , 2006 .

[7]  Marius Junge Factorization theory for spaces of operators , 1999 .

[8]  T. Oikhberg Restricted Schur multipliers and their applications , 2010 .

[9]  J. Diestel,et al.  Absolutely Summing Operators , 1995 .

[10]  Joram Lindenstrauss,et al.  Classical Banach spaces I: Sequence Spaces. , 1977 .

[11]  Joram Lindenstrauss,et al.  Classical Banach spaces , 1973 .

[12]  Hun Hee Lee,et al.  A Maurey type result for operator spaces , 2007, 0707.0152.

[13]  Quanhua Xu,et al.  Embedding of Cq and Rq into noncommutative Lp -spaces, 1≤p , 2006 .

[14]  Marius Junge,et al.  Representation of certain homogeneous Hilbertian operator spaces and applications , 2009, 0906.5308.

[15]  Quanhua Xu Operator-space Grothendieck inequalities for noncommutative $L_p$-spaces , 2005, math/0505306.

[16]  Barry Simon,et al.  Pointwise domination of matrices and comparison of ℐ_p norms , 1981 .

[17]  Khye Loong Yew Completely p-summing maps on the operator Hilbert space OH , 2008 .

[18]  M. Robdera,et al.  Convolution operators associated with vector measures , 1998, Glasgow Mathematical Journal.