Optimal control of aerospace systems with control-state constraints and delays

In this work, we address the real-time optimal guidance of launch vehicles with the objective of designing an autonomous algorithm for the prediction of optimal control strategies, based on indirect methods, able to adapt itself to unpredicted changes of the original scenario. To this aim, we first provide an accurate geometric analysis in the presence of mixed control-state constraints to recover a well-posed framework and correctly apply indirect methods. A practical numerical integration of the problem is proposed by efficiently combining indirect methods with homotopy procedures, increasing robustness and computational speed. Moreover, we improve dynamical models by considering delays. More specifically, we introduce a rigorous and well-posed homotopy framework to recover solutions for optimal control problems with delays via indirect methods. All our contributions made possible the development of a fully automatic, independent and self-regulating software, today property of ONERA-The French Aerospace Lab, for general realistic endo-atmospheric launch vehicle applications focused on optimal missile interception scenarios.

[1]  Augusto Visintin,et al.  Strong convergence results related to strict convexity , 1984 .

[2]  Emmanuel Trélat,et al.  Mécanique céleste et contrôle de systèmes spatiaux , 2006 .

[3]  Emmanuel Trélat,et al.  Second order optimality conditions with applications , 2007 .

[4]  Ping Lu,et al.  Nonlinear predictive controllers for continuous systems , 1994 .

[5]  Robert B. Asher,et al.  Optimal control of systems with state-dependent time delay† , 1971 .

[6]  M. Krstić Delay Compensation for Nonlinear, Adaptive, and PDE Systems , 2009 .

[7]  H. Sussmann,et al.  A maximum principle for hybrid optimal control problems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[8]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[9]  Donald E. Carlucci,et al.  Ballistics: Theory and Design of Guns and Ammunition , 2007 .

[10]  J. Frédéric Bonnans,et al.  Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems with a Single Constraint and Control , 2007, SIAM J. Control. Optim..

[11]  A. V. Dmitruk,et al.  Maximum principle for the general optimal control problem with phase and regular mixed constraints , 1993 .

[12]  Emmanuel Trélat,et al.  Minimum Time Control of the Rocket Attitude Reorientation Associated with Orbit Dynamics , 2015, SIAM J. Control. Optim..

[13]  Ching-Fang Lin,et al.  Modern Navigation, Guidance, And Control Processing , 1991 .

[14]  Bruce A. Conway,et al.  A Survey of Methods Available for the Numerical Optimization of Continuous Dynamic Systems , 2011, Journal of Optimization Theory and Applications.

[15]  J. Frédéric Bonnans,et al.  No-gap second-order optimality conditions for optimal control problems with a single state constraint and control , 2009, Math. Program..

[16]  P. Berck,et al.  Calculus of variations and optimal control theory , 1993 .

[17]  H. Maurer First and second order sufficient optimality conditions in mathematical programming and optimal control , 1981 .

[18]  Anil V. Rao,et al.  ( Preprint ) AAS 09-334 A SURVEY OF NUMERICAL METHODS FOR OPTIMAL CONTROL , 2009 .

[19]  Imsong Lee,et al.  Optimal Trajectory, Guidance, and Conjugate Points , 1965, Inf. Control..

[20]  M. Kaplan Modern Spacecraft Dynamics and Control , 1976 .

[21]  A. F. Filippov On Certain Questions in the Theory of Optimal Control , 1962 .

[22]  Emmanuel Trélat,et al.  Convergence Results for Smooth Regularizations of Hybrid Nonlinear Optimal Control Problems , 2011, SIAM J. Control. Optim..

[23]  Rein Luus,et al.  Optimal feedback control of time‐delay systems , 1976 .

[24]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[25]  Andreas Kugi,et al.  Handling constraints in optimal control with saturation functions and system extension , 2010, Syst. Control. Lett..

[26]  Emmanuel Trélat,et al.  Geometric optimal control and applications to aerospace , 2017, 1701.06203.

[27]  D. Orrell,et al.  Another Jacobi sufficiency criterion for optimal control with smooth constraints , 1988 .

[28]  Thomas S. Angell,et al.  On the necessary conditions for optimal control of retarded systems , 1990 .

[29]  V. G. Boltyanskiy The Maximum Principle in the Theory of Optimal Processes. , 1961 .

[30]  G. Walberg A Survey of Aeroassisted Orbit Transfer , 1985 .

[31]  C. Kelley Solving Nonlinear Equations with Newton's Method , 1987 .

[32]  I. Ekeland On the variational principle , 1974 .

[33]  Emmanuel Trélat,et al.  Optimal Control with State Constraints and the Space Shuttle Re-entry Problem , 2003 .

[34]  S. Nababan,et al.  A Filippov-type lemma for functions involving delays and its application to time-delayed optimal control problems , 1979 .

[35]  M. Filomena Teodoro,et al.  Analytical and numerical investigation of mixed-type functional differential equations , 2010, J. Comput. Appl. Math..

[36]  A. Halanay Optimal Controls for Systems with Time Lag , 1968 .

[37]  Jiongmin Yong,et al.  Optimal Control Theory for Infinite Dimensional Systems , 1994 .

[38]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..

[39]  Angelo Miele,et al.  Optimal trajectories for aeroassisted orbital transfer , 1984 .

[40]  A.Ya. Dubovitskii,et al.  Extremum problems in the presence of restrictions , 1965 .

[41]  Fernando M. Lobo Pereira,et al.  The Maximum Principle for Optimal Control Problems with State Constraints by R.V. Gamkrelidze: Revisited , 2011, J. Optim. Theory Appl..

[42]  H. Maurer On Optimal Control Problems with Bounded State Variables and Control Appearing Linearly , 1975, Optimization Techniques.

[43]  H. Maurer,et al.  Second-order sufficient conditions for control problems with mixed control-state constraints , 1995 .

[44]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[45]  A. Krener The High Order Maximal Principle and Its Application to Singular Extremals , 1977 .

[46]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[47]  H. Schättler,et al.  Geometric Optimal Control: Theory, Methods and Examples , 2012 .

[48]  M. Teodoro Numerical Approach of a Nonlinear Forward-backward Equation , 2016 .

[49]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[50]  D. Hull Conversion of optimal control problems into parameter optimization problems , 1996 .

[51]  J. F. Bonnans,et al.  STABILITY AND SENSITIVITY ANALYSIS FOR OPTIMAL CONTROL PROBLEMS WITH A FIRST-ORDER STATE CONSTRAINT AND APPLICATION TO CONTINUATION METHODS , 2008 .

[52]  T. Guinn Reduction of delayed optimal control problems to nondelayed problems , 1976 .

[53]  N. Petit,et al.  A continuation approach to state and adjoint calculation in optimal control applied to the reentry problem , 2008 .

[54]  Thomas Haberkorn,et al.  Low thrust minimum-fuel orbital transfer: a homotopic approach , 2004 .

[55]  J. Ball OPTIMIZATION—THEORY AND APPLICATIONS Problems with Ordinary Differential Equations (Applications of Mathematics, 17) , 1984 .

[56]  J. C. Harpold,et al.  Shuttle entry guidance , 1978 .

[57]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[58]  C. Hargraves,et al.  DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .

[59]  N. Petit,et al.  Constructive Methods for Initialization and Handling Mixed State-Input Constraints in Optimal Control , 2008 .

[60]  Harvey Thomas Banks,et al.  Necessary Conditions for Control Problems with Variable Time Lags , 1968 .

[61]  Optimal control of a space shuttle, and numerical simulations , 2003 .

[62]  J. Hanson,et al.  A Plan for Advanced Guidance and Control Technology for 2nd Generation Reusable Launch Vehicles , 2002 .

[63]  A. Isidori,et al.  On the nonlinear equivalent of the notion of transmission zeros , 1988 .

[64]  Dong Eui Chang,et al.  A simple proof of the Pontryagin maximum principle on manifolds , 2011, Autom..

[65]  M. Chyba,et al.  Singular Trajectories and Their Role in Control Theory , 2003, IEEE Transactions on Automatic Control.

[66]  M. Cerf,et al.  Continuation from a flat to a round Earth model in the coplanar orbit transfer problem , 2012 .

[67]  P. Pharpatara,et al.  3-D Trajectory Planning of Aerial Vehicles Using RRT* , 2017, IEEE Transactions on Control Systems Technology.

[68]  Riccardo Bonalli,et al.  Solving optimal control problems for delayed control-affine systems with quadratic cost by numerical continuation , 2017, 2017 American Control Conference (ACC).

[69]  Bruno Hérissé Asservissement et navigation autonome d'un drone en environnement incertain par flot optique , 2010 .

[70]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[71]  Audrey Hermant,et al.  Optimal control of the atmospheric reentry of a space shuttle by an homotopy method , 2011 .

[72]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[73]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[74]  Aldo Rustichini,et al.  Functional differential equations of mixed type: The linear autonomous case , 1989 .

[75]  Helmut Maurer,et al.  THEORY AND APPLICATIONS OF OPTIMAL CONTROL PROBLEMS WITH MULTIPLE TIME-DELAYS , 2013 .

[76]  Helmut Maurer,et al.  First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems , 1979, Math. Program..

[77]  Ping Lu An inverse dynamics approach to trajectory optimization for an aerospace plane , 1992 .

[78]  Ping Lu,et al.  Autonomous Trajectory Planning for Rendezvous and Proximity Operations by Conic Optimization , 2012 .

[79]  A. Galántai The theory of Newton's method , 2000 .

[80]  E. Trélat,et al.  Singular Arcs in the Generalized Goddard’s Problem , 2007, math/0703911.

[81]  David L. Elliott,et al.  Geometric control theory , 2000, IEEE Trans. Autom. Control..

[82]  Emmanuel Tr'elat,et al.  On the stabilization problem for nonholonomic distributions , 2006, math/0610363.

[83]  Maurizio Falcone,et al.  An efficient algorithm for Hamilton–Jacobi equations in high dimension , 2004 .

[84]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[85]  Rein Luus,et al.  Optimal control of time-delay systems by dynamic programming , 1992 .

[86]  Daniele Pucci,et al.  Nonlinear feedback control of axisymmetric aerial vehicles , 2014, Autom..

[87]  David K. Schmidt,et al.  Analytical aeropropulsive-aeroelastic hypersonic-vehicle model with dynamic analysis , 1994 .

[88]  Li Xunjing,et al.  On optimal control of functional differential systems , 1987 .

[89]  F. Clarke The Maximum Principle under Minimal Hypotheses , 1976 .

[90]  Sabine Pickenhain,et al.  Sufficiency Conditions for Weak Local Minima in Multidimensional Optimal Control Problems with Mixed Control-State Restrictions , 1992 .

[91]  Helmut Maurer,et al.  Free time optimal control problems with time delays , 2013, 52nd IEEE Conference on Decision and Control.

[92]  Francis Clarke,et al.  Optimal Control Problems with Mixed Constraints , 2010, SIAM J. Control. Optim..

[93]  Paul Zarchan,et al.  A New Look at Classical vs Modern Homing Missile Guidance , 1981 .

[94]  H. Hermes,et al.  Foundations of optimal control theory , 1968 .

[95]  Stefan Gottschalk,et al.  Aerodynamics Aeronautics And Flight Mechanics , 2016 .

[96]  Frank H. Clarke,et al.  The relationship between the maximum principle and dynamic programming , 1987 .

[97]  D. Jacobson,et al.  New necessary conditions of optimality for control problems with state-variable inequality constraints , 1971 .

[98]  R. V. Gamkrelidze,et al.  Principles of optimal control theory , 1977 .

[99]  V. Zeidan The Riccati Equation for Optimal Control Problems with Mixed State-Control Constraints: Necessity and Sufficiency , 1994 .

[101]  Jiamin Zhu Contrôle optimal de l'attitude d'un lanceur , 2016 .

[102]  Suresh P. Sethi,et al.  A Survey of the Maximum Principles for Optimal Control Problems with State Constraints , 1995, SIAM Rev..

[103]  Vera Zeidan,et al.  Necessary conditions for optimal control problems: conjugate points , 1988 .

[104]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[105]  N. Petit,et al.  Incorporating a class of constraints into the dynamics of optimal control problems , 2009 .

[106]  John Mallet-Paret,et al.  MIXED-TYPE FUNCTIONAL DIFFERENTIAL EQUATIONS, HOLOMORPHIC FACTORIZATION, AND APPLICATIONS , 2005 .

[107]  Ping Lu,et al.  Solving Nonconvex Optimal Control Problems by Convex Optimization , 2014 .

[108]  Benjamin Pfaff,et al.  Perturbation Analysis Of Optimization Problems , 2016 .

[109]  Behcet Acikmese,et al.  Minimum-Landing-Error Powered-Descent Guidance for Mars Landing Using Convex Optimization , 2010 .

[110]  J. Coron Control and Nonlinearity , 2007 .

[111]  Emmanuel Trélat,et al.  Optimal Control and Applications to Aerospace: Some Results and Challenges , 2012, Journal of Optimization Theory and Applications.