On the Performance of Sentinel‐3 Altimetry Over New Reservoirs: Approaches to Determine Onboard A Priori Elevation

[1]  Ole Baltazar Andersen,et al.  The performance and potentials of the CryoSat-2 SAR and SARIn modes for lake level estimation , 2017 .

[2]  Cristina Martin-Puig,et al.  Evaluating the Performance of Jason-2 Open-Loop and Closed-Loop Tracker Modes , 2016 .

[3]  J. Crétaux,et al.  Lake studies from satellite radar altimetry , 2006 .

[4]  Peter Bauer-Gottwein,et al.  Assimilation of radar altimetry to a routing model of the Brahmaputra River , 2013 .

[5]  M. Flörke,et al.  Hydrological threats to riparian wetlands of international importance - a global quantitative and qualitative analysis , 2016 .

[6]  Wei Wang,et al.  Dam Construction in Lancang‐Mekong River Basin Could Mitigate Future Flood Risk From Warming‐Induced Intensified Rainfall , 2017 .

[7]  J. Crétaux,et al.  Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin , 2015 .

[8]  A Four-Step Method for Optimising the Normal Water Level of Reservoirs Based on a Mathematical Programming Model—A Case Study for the Songyuan Backwater Dam in Jilin Province, China , 2011, International journal of environmental research and public health.

[9]  Christine Gommenginger,et al.  Retracking Altimeter Waveforms Near the Coasts , 2011 .

[10]  P. Döll,et al.  High‐resolution mapping of the world's reservoirs and dams for sustainable river‐flow management , 2011 .

[11]  Peter Bauer-Gottwein,et al.  Evaluation of Sentinel-3 SRAL SAR altimetry over Chinese rivers , 2020 .

[12]  Mark Mulligan,et al.  GOODD, a global dataset of more than 38,000 georeferenced dams , 2020, Scientific Data.

[13]  C. Tøttrup,et al.  Informing a hydrological model of the Ogooué with multi-mission remote sensing data , 2017 .

[14]  G. Carayon,et al.  Poseidon-3 Radar Altimeter: New Modes and In-Flight Performances , 2010 .

[15]  Peter Bauer-Gottwein,et al.  Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data , 2017 .

[16]  Ole Baltazar Andersen,et al.  Validation of CryoSat-2 SAR mode based lake levels , 2015 .

[17]  K. Tockner,et al.  A global boom in hydropower dam construction , 2014, Aquatic Sciences.

[18]  Achim Roth,et al.  Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data , 2018 .

[19]  H. Winsemius,et al.  Using altimetry observations combined with GRACE to select parameter sets of a hydrological model in a data-scarce region , 2020 .

[20]  D. Lettenmaier,et al.  The Contribution of Reservoirs to Global Land Surface Water Storage Variations , 2016 .

[21]  Peter Bauer-Gottwein,et al.  Real-time remote sensing driven river basin modeling using radar altimetry , 2010 .

[22]  P. McIntyre,et al.  Worldwide lake level trends and responses to background climate variation , 2020, Hydrology and Earth System Sciences.

[23]  Luca Brocca,et al.  The use of remote sensing-derived water surface data for hydraulic model calibration , 2014 .

[24]  C. Birkett,et al.  The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes , 1995 .

[25]  Henrik Madsen,et al.  Evaluation of multi-mode CryoSat-2 altimetry data over the Po River against in situ data and a hydrodynamic model , 2018 .

[26]  F. Frappart,et al.  Combining high-resolution satellite images and altimetry to estimate the volume of small lakes , 2013 .

[27]  Denis Blumstein,et al.  Benefits of the Open-Loop Tracking Command (OLTC): Extending conventional nadir altimetry to inland waters monitoring , 2019, Advances in Space Research.

[28]  Frédéric Frappart,et al.  Satellite radar altimetry water elevations performance over a 200 m wide river: Evaluation over the Garonne River , 2017 .

[29]  Peter Bauer-Gottwein,et al.  Sentinel-3 radar altimetry for river monitoring – a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B , 2020, Hydrology and Earth System Sciences.

[30]  Robin T. Clarke,et al.  Measurement of river level variations with satellite altimetry , 1993 .

[31]  Muddu Sekhar,et al.  Satellite-derived surface and sub-surface water storage in the Ganges–Brahmaputra River Basin , 2015 .

[32]  Henrik Madsen,et al.  Simultaneous calibration of multiple hydrodynamic model parameters using satellite altimetry observations of water surface elevation in the Songhua River , 2019, Remote Sensing of Environment.

[33]  Peter Bauer-Gottwein,et al.  CryoSat-2 Altimetry Applications over Rivers and Lakes , 2017 .

[34]  U. Wehn,et al.  Data sharing in international transboundary contexts: The Vietnamese perspective on data sharing in the Lower Mekong Basin , 2016 .

[35]  Fernando Niño,et al.  Validation of Jason-3 tracking modes over French rivers , 2018 .

[36]  Peter Bauer-Gottwein,et al.  CryoSat-2 radar altimetry for monitoring freshwater resources of China , 2017 .

[37]  J. Crétaux,et al.  Lake Volume Monitoring from Space , 2016, Surveys in Geophysics.

[38]  Peter Bauer-Gottwein,et al.  Influence of local geoid variation on water surface elevation estimates derived from multi-mission altimetry for Lake Namco , 2019, Remote Sensing of Environment.

[39]  J. Pekel,et al.  High-resolution mapping of global surface water and its long-term changes , 2016, Nature.

[40]  A. Cazenave,et al.  Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin , 2006 .

[41]  Brian D. Richter,et al.  Lost in development's shadow: the downstream human consequences of dams. , 2010 .

[42]  D. Hannah,et al.  Large‐scale river flow archives: importance, current status and future needs , 2011 .

[43]  N. Steunou,et al.  AltiKa Altimeter: Instrument Description and In Flight Performance , 2015 .

[44]  Abdollah A. Jarihani,et al.  Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods , 2013 .