Non-conformal Repellers and the Continuity of Pressure for Matrix Cocycles

[1]  I. Kocyigit,et al.  On the Dimension of Self-Affine Fractals , 2013 .

[2]  De-Jun Feng Equilibrium states for factor maps between subshifts , 2011 .

[3]  M. Viana,et al.  Continuity of Lyapunov Exponents for Random 2D Matrices , 2010, 1012.0872.

[4]  L. Barreira Almost Additive Thermodynamic Formalism:. Some Recent Developments , 2010 .

[5]  A. Käenmäki,et al.  Dimension and measures on sub-self-affine sets , 2010, 1701.08611.

[6]  De-Jun Feng,et al.  Equilibrium states of the pressure function for products of matrices , 2010, 1009.3129.

[7]  Nikita Sidorov,et al.  An explicit counterexample to the Lagarias-Wang finiteness conjecture , 2010, ArXiv.

[8]  K. Falconer Generalized dimensions of measures on almost self-affine sets , 2009, 0911.0744.

[9]  M. Mirzakhani,et al.  Introduction to Ergodic theory , 2010 .

[10]  K. Falconer,et al.  RANDOM SUBSETS OF SELF-AFFINE FRACTALS , 2010 .

[11]  Wen Huang,et al.  Lyapunov Spectrum of Asymptotically Sub-additive Potentials , 2009, 0905.2680.

[12]  Gary Froyland,et al.  Coherent structures and isolated spectrum for Perron–Frobenius cocycles , 2008, Ergodic Theory and Dynamical Systems.

[13]  P. Shmerkin,et al.  Overlapping self-affine sets of Kakeya type , 2007, Ergodic Theory and Dynamical Systems.

[14]  K. Falconer,et al.  Continuity of Subadditive Pressure for Self-Affine Sets , 2009 .

[15]  Boris Kalinin,et al.  Livsic theorem for matrix cocycles , 2008, 0808.0350.

[16]  Sulla Derivabilita,et al.  RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO , 2008 .

[17]  Wen Huang,et al.  The thermodynamic formalism for sub-additive potentials , 2007 .

[18]  U. Bader,et al.  Ergodic Theory and Dynamical Systems , 2013 .

[19]  Anna Mummert The thermodynamic formalism for almost-additive sequences , 2006 .

[20]  A. Käenmäki On natural invariant measures on generalised iterated function systems , 2017 .

[21]  K. Lau,et al.  The pressure function for products of non-negative matrices , 2002, math/0205028.

[22]  J. Bochi,et al.  A formula with some applications to the theory of Lyapunov exponents , 2001, math/0104103.

[23]  K. Falconer Generalized dimensions of measures on self-affine sets , 1999 .

[24]  B. Solomyak Measure and dimension for some fractal families , 1998, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  Yingjie Zhang Dynamical upper bounds for Hausdorff dimension of invariant sets , 1997, Ergodic Theory and Dynamical Systems.

[26]  L. Barreira A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems , 1996, Ergodic Theory and Dynamical Systems.

[27]  Steven P. Lalley,et al.  Falconer's formula for the Hausdorff dimension of a self-affine set in R2 , 1995, Ergodic Theory and Dynamical Systems.

[28]  Lai-Sang Young,et al.  Ergodic Theory of Differentiable Dynamical Systems , 1995 .

[29]  K. Falconer Bounded distortion and dimension for non-conformal repellers , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  K. Falconer A subadditive thermodynamic formalism for mixing repellers , 1988 .

[31]  Kenneth Falconer,et al.  The Hausdorff dimension of self-affine fractals , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  C. Pommerenke,et al.  On the Hausdorff dimension of quasicircles , 1987 .

[33]  P. Bougerol,et al.  Products of Random Matrices with Applications to Schrödinger Operators , 1985 .

[34]  D. Newton AN INTRODUCTION TO ERGODIC THEORY (Graduate Texts in Mathematics, 79) , 1982 .

[35]  D. Ruelle Repellers for real analytic maps , 1982, Ergodic Theory and Dynamical Systems.

[36]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[37]  R. Bowen TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS , 1973 .

[38]  C. Caramanis What is ergodic theory , 1963 .