Approximate likelihood for noisy mixtures

This contribution addresses the problem of maximum likelihood (ML) estimation for noisy mixtures for both the square case and the overcomplete case. We consider the EM algorithm for ML estimation and derive several approximations of it in the limit of low noise and of heavy tailed source distributions.

[1]  Pierre Comon,et al.  Blind channel identification and extraction of more sources than sensors , 1998, Optics & Photonics.

[2]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[3]  Bruno A. Olshausen,et al.  Inferring Sparse, Overcomplete Image Codes Using an Efficient Coding Framework , 1998, NIPS.

[4]  Jean-Francois Cardoso,et al.  Super-symmetric decomposition of the fourth-order cumulant tensor. Blind identification of more sources than sensors , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[5]  D. Field,et al.  Natural image statistics and efficient coding. , 1996, Network.

[6]  K. Kreutz-Delgado,et al.  A General Approach to Sparse Basis Selection : Majorization , Concavity , and Affine Scaling — — — — — – , 1997 .

[7]  Terrence J. Sejnowski,et al.  Learning Nonlinear Overcomplete Representations for Efficient Coding , 1997, NIPS.

[8]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[9]  Shun-ichi Amari,et al.  Neural Learning in Structured Parameter Spaces - Natural Riemannian Gradient , 1996, NIPS.

[10]  Eric Moulines,et al.  Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[11]  B. Olshausen Learning linear, sparse, factorial codes , 1996 .

[12]  Dinh Tuan Pham,et al.  Separation of a mixture of independent sources through a maximum likelihood approach , 1992 .

[13]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[14]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .