Geometric Algebra and Möbius Sphere Geometry as a Basis for Euclidean Invariant Theory
暂无分享,去创建一个
[1] D. Hestenes. The design of linear algebra and geometry , 1991 .
[2] G. Rota,et al. On The Foundations of Combinatorial Theory: Combinatorial Geometries , 1970 .
[3] W. V. Hodge,et al. Methods of algebraic geometry , 1947 .
[4] Neil L. White. Invariant-Theoretic Computation in Projective Geometry , 1990, Discrete and Computational Geometry.
[5] Timothy F. Havel,et al. Distance geometry and geometric algebra , 1993 .
[6] D. Hestenes. UNIVERSAL GEOMETRIC ALGEBRA , 1988 .
[7] Gian-Carlo Rota,et al. On the Exterior Calculus of Invariant Theory , 1985 .
[8] D. Hestenes,et al. Clifford Algebra to Geometric Calculus , 1984 .
[9] Ernst Snapper,et al. Metric affine geometry , 1973 .
[10] D. Hestenes,et al. Projective geometry with Clifford algebra , 1991 .
[11] Thomas E. Cecil. Lie sphere geometry , 1992 .
[12] Leonard M. Blumenthal,et al. Theory and applications of distance geometry , 1954 .
[13] D. Hestenes,et al. Lie-groups as Spin groups. , 1993 .
[14] Timothy F. Havel. Some Examples of the Use of Distances as Coordinates for Euclidean Geometry , 1991, J. Symb. Comput..
[15] Michael G. Crowe,et al. A History of Vector Analysis , 1969 .
[16] B. Sturmfels. Oriented Matroids , 1993 .
[17] Gordon M. Crippen,et al. Distance Geometry and Molecular Conformation , 1988 .
[18] K. Menger. Untersuchungen über allgemeine Metrik , 1928 .
[19] Walter Whiteley,et al. Invariant Computations for Analytic Projective Geometry , 1991, J. Symb. Comput..