Tree-like Properties of Cycle Factorizations
暂无分享,去创建一个
[1] Emeric Deutsch,et al. New Statistics on Non-crossing Trees , 2000 .
[2] R. Pandharipande,et al. Stable Maps and Branch Divisors , 1999, Compositio Mathematica.
[3] D. White,et al. Constructive combinatorics , 1986 .
[4] On Hurwitz numbers and Hodge integrals , 1999, math/9902104.
[5] V. I. Arnold,et al. Topological classification of trigonometric polynomials and combinatorics of graphs with an equal number of vertices and edges , 1996 .
[6] A. Hurwitz. Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten , 1891 .
[7] Ian P. Goulden,et al. Labelled trees and factorizations of a cycle into transpositions , 1993, Discret. Math..
[8] I. Goulden,et al. The Gromov–Witten Potential of A Point, Hurwitz Numbers, and Hodge Integrals , 1999, math/9910004.
[9] I. Goulden,et al. Transitive factorisations into transpositions and holomorphic mappings on the sphere , 1997 .
[10] Paul Moszkowski. A Solution to a Problem of Dénes: a Bijection Between Trees and Factorizations of Cyclic Permutations , 1989, Eur. J. Comb..