GRB 081029: A GAMMA-RAY BURST WITH A MULTI-COMPONENT AFTERGLOW

We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long–soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3 m telescopes to construct a detailed data set extending from 86 s to ∼100000 s after the BAT trigger. Our data cover a wide energy range from 10 keV to 0.77 eV (1.24 Å–16000 Å). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray-burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray-burst jets are complex and will require detailed modeling to fully understand them.

[1]  Rony Keppens,et al.  Two-shell collisions in the gamma-ray burst afterglow phase , 2011 .

[2]  T. Sakamoto,et al.  A PHOTOMETRIC REDSHIFT OF z ∼ 9.4 FOR GRB 090429B , 2011, 1105.4915.

[3]  D. A. Kann,et al.  On the nature of the extremely fast optical rebrightening of the afterglow of GRB 081029 , 2011, 1105.0917.

[4]  A. Breeveld,et al.  An Updated Ultraviolet Calibration for the Swift/UVOT , 2011, 1102.4717.

[5]  L. A. Antonelli,et al.  THE LATE PEAKING AFTERGLOW OF GRB 100418A , 2011 .

[6]  W. T. Vestrand,et al.  Optical afterglows of Gamma-Ray Bursts: peaks, plateaus, and possibilities , 2010, 1009.3947.

[7]  M. J. Page,et al.  Further calibration of the Swift ultraviolet/optical telescope , 2010, 1004.2448.

[8]  T. Dwelly,et al.  Dust and metal column densities in gamma-ray burst host galaxies , 2009, 0910.2590.

[9]  Bing Zhang,et al.  DISCERNING THE PHYSICAL ORIGINS OF COSMOLOGICAL GAMMA-RAY BURSTS BASED ON MULTIPLE OBSERVATIONAL CRITERIA: THE CASES OF z = 6.7 GRB 080913, z = 8.2 GRB 090423, AND SOME SHORT/HARD GRBs , 2009, 0902.2419.

[10]  M. J. Page,et al.  A statistical study of gamma-ray burst afterglows measured by the Swift Ultraviolet Optical Telescope , 2009, 0901.3597.

[11]  P. Schady,et al.  Jet breaks at the end of the slow decline phase of Swift GRB light curves , 2008, 0809.4688.

[12]  C. Guidorzi,et al.  THE PROMPT, HIGH-RESOLUTION SPECTROSCOPIC VIEW OF THE “NAKED-EYE” GRB080319B , 2008, 0804.2141.

[13]  A. J. Levan,et al.  GRB 080913 AT REDSHIFT 6.7 , 2008, 0810.2314.

[14]  T. S. Koch,et al.  THE FIRST SWIFT ULTRAVIOLET/OPTICAL TELESCOPE GRB AFTERGLOW CATALOG , 2008, 0809.4193.

[15]  T. Sakamoto,et al.  Screening High‐z GRBs with BAT Prompt Emission Properties , 2008, 0802.3815.

[16]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[17]  T. Sakamoto,et al.  The First Swift BAT Gamma-Ray Burst Catalog , 2007, 0707.4626.

[18]  K. L. Page,et al.  The two-component afterglow of Swift GRB 050802 , 2007, 0706.0669.

[19]  J. P. Osborne,et al.  An online repository of Swift/XRT light curves of Γ-ray bursts , 2007, 0704.0128.

[20]  A. J. van der Horst,et al.  Gamma-Ray Burst Afterglows as Probes of Environment and Blast Wave Physics. I. Absorption by Host-Galaxy Gas and Dust , 2006, astro-ph/0610899.

[21]  Y. Fan,et al.  A Two-Component Jet Model for the X-Ray Afterglow Flat Segment in the Short Gamma-Ray Burst GRB 051221A , 2006, astro-ph/0610010.

[22]  Sandra Savaglio,et al.  Rapid-response mode VLT/UVES spectroscopy of GRB 060418. Conclusive evidence for UV pumping from the time evolution of Fe II and Ni II excited- and metastable-level populations , 2006 .

[23]  P. Schady,et al.  Dust and gas in the local environments of gamma-ray bursts , 2006, astro-ph/0702122.

[24]  L. A. Antonelli,et al.  An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova , 2006, Nature.

[25]  J. Fynbo,et al.  Optical, Infrared, and Ultraviolet Observations of the X-Ray Flash XRF 050416A , 2006, astro-ph/0604316.

[26]  J. Prieto,et al.  “Anomalous” Optical Gamma-Ray Burst Afterglows Are Common: Two z ~ 4 Bursts, GRB 060206 and GRB 060210 , 2006, astro-ph/0602495.

[27]  P. Wozniak,et al.  RAPTOR Observations of Delayed Explosive Activity in the High-Redshift Gamma-Ray Burst GRB 060206 , 2006, astro-ph/0602403.

[28]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[29]  D. A. Kann,et al.  Signatures of Extragalactic Dust in Pre-Swift GRB Afterglows , 2005, astro-ph/0512575.

[30]  E. Rykoff,et al.  Early-Time Observations of the GRB 050319 Optical Transient , 2005, astro-ph/0511421.

[31]  Bing Zhang,et al.  Flares in Long and Short Gamma-Ray Bursts: A Common Origin in a Hyperaccreting Accretion Disk , 2005, astro-ph/0511506.

[32]  P. O’Brien,et al.  Gamma-Ray Bursts: Restarting the Engine , 2005, astro-ph/0508126.

[33]  J. Granot,et al.  Two-Component Jet Models of Gamma-Ray Burst Sources , 2004, astro-ph/0410384.

[34]  Paolo Conconi,et al.  REM: a fully robotic telescope for GRB observations , 2004, SPIE Astronomical Telescopes + Instrumentation.

[35]  Patrick Charlot,et al.  The Second Extension of the International Celestial Reference Frame: ICRF-EXT.1 , 2004 .

[36]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[37]  Scott D. Barthelmy,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004, SPIE Optics + Photonics.

[38]  L. A. Antonelli,et al.  Absorption in Gamma-Ray Burst Afterglows , 2004, astro-ph/0403149.

[39]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[40]  D. Frail,et al.  A common origin for cosmic explosions inferred from calorimetry of GRB030329 , 2003, Nature.

[41]  N. Vlahakis,et al.  Neutron-rich Hydromagnetic Outflows in Gamma-Ray Burst Sources , 2003, astro-ph/0306029.

[42]  J. Granot,et al.  The Evolution of a Structured Relativistic Jet and Gamma-Ray Burst Afterglow Light Curves , 2003, astro-ph/0303174.

[43]  Andrea Di Paola,et al.  AQUA: a very fast automatic reduction pipeline for near real-time GRBs early afterglow detection , 2002, SPIE Astronomical Telescopes + Instrumentation.

[44]  E.,et al.  The REM telescope: detecting the near infra-red counterparts of Gamma-Ray Bursts and the prompt behavior of their optical continuum , 2001, astro-ph/0203034.

[45]  Bernard Delabre,et al.  Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory , 2000, Astronomical Telescopes and Instrumentation.

[46]  J. Rhoads The Dynamics and Light Curves of Beamed Gamma-Ray Burst Afterglows , 1999, astro-ph/9903399.

[47]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[48]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[49]  M. Feroci,et al.  The optical counterpart to the γ-ray burst GRB970508 , 1997, Nature.

[50]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[51]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[52]  Martin G. Cohen,et al.  Spectral irradiance calibration in the infrared. II - Alpha Tau and the recalibration of the IRAS low resolution spectrometer , 1992 .

[53]  Michael J. Barlow,et al.  Spectral irradiance calibration in the infrared. I - Ground-based and IRAS broadband calibrations , 1992 .

[54]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[55]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .