Molecular dynamics of sense and sensibility in processing and analysis of data

[1]  M. Kates,et al.  [13] Lipids of purple membrane from extreme halophiles and of methanogenic bacteria , 1982 .

[2]  D. Wallace,et al.  Statistical errors in molecular dynamics averages , 1985 .

[3]  P J Artymiuk,et al.  Refinement of human lysozyme at 1.5 A resolution analysis of non-bonded and hydrogen-bond interactions. , 1981, Journal of molecular biology.

[4]  W. Coley,et al.  Contribution To The Knowledge Of Sarcoma , 1891 .

[5]  V. Dixit,et al.  TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling , 1998, FEBS letters.

[6]  I. Herr,et al.  Autoamplification of apoptosis following ligation of CD95-L, TRAIL and TNF-α , 2000, Oncogene.

[7]  M. Karplus,et al.  Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations , 1991, Proteins.

[8]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[9]  C. Rauch,et al.  Tumoricidal activity of tumor necrosis factor–related apoptosis–inducing ligand in vivo , 1999, Nature Medicine.

[10]  W. Stoeckenius,et al.  Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface. , 1989, Biophysical journal.

[11]  H. Luecke,et al.  X-ray crystallographic analysis of lipid-protein interactions in the bacteriorhodopsin purple membrane. , 2003, Annual review of biophysics and biomolecular structure.

[12]  A. Eaves,et al.  Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biologic properties. , 1978, Blood.

[13]  E. Jones,et al.  The tumour necrosis factor receptor family: life or death choices. , 2000, Current opinion in structural biology.

[14]  R. C. Bose,et al.  Simultaneous Confidence Interval Estimation , 1953 .

[15]  B. Aggarwal,et al.  Characterization of receptors for human tumour necrosis factor and their regulation by γ-interferon , 1985, Nature.

[16]  A. D. McLachlan,et al.  Solvation energy in protein folding and binding , 1986, Nature.

[17]  Barry Honig,et al.  Comparative study of generalized Born models: protein dynamics. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Rupert G. Miller The jackknife-a review , 1974 .

[19]  C. Dempsey,et al.  Solution structure of the actinorhodin polyketide synthase acyl carrier protein from Streptomyces coelicolor A3(2). , 1997, Biochemistry.

[20]  N. Xuong,et al.  A plasmid-encoded dihydrofolate reductase from trimethoprim-resistant bacteria has a novel D2-symmetric active site , 1995, Nature Structural Biology.

[21]  R. Kaptein,et al.  Solution structure of the LexA repressor DNA binding domain determined by 1H NMR spectroscopy. , 1994, The EMBO journal.

[22]  H. Khorana,et al.  Protonation state of Asp (Glu)-85 regulates the purple-to-blue transition in bacteriorhodopsin mutants Arg-82----Ala and Asp-85----Glu: the blue form is inactive in proton translocation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[23]  B. Aggarwal Signalling pathways of the TNF superfamily: a double-edged sword , 2003, Nature Reviews Immunology.

[24]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[25]  G. H. Algire,et al.  Vascular reactions of normal and malignant tissues in vivo. V. The rôle of hypotension in the action of a bacterial polysaccharide on tumors. , 1952, Journal of the National Cancer Institute.

[26]  D. Oesterhelt,et al.  Rhodopsin-like protein from the purple membrane of Halobacterium halobium. , 1971, Nature: New biology.

[27]  H. Hotelling The Generalization of Student’s Ratio , 1931 .

[28]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[29]  Robert M. Stroud,et al.  Efficiency of signalling through cytokine receptors depends critically on receptor orientation , 1998, Nature.

[30]  T. Arakawa,et al.  Structural characterization of human erythropoietin. , 1986, The Journal of biological chemistry.

[31]  J. Bell,et al.  TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL , 1997, Current Biology.

[32]  R Henderson,et al.  Electron-crystallographic refinement of the structure of bacteriorhodopsin. , 1996, Journal of molecular biology.

[33]  Roberto D. Lins,et al.  A new GROMOS force field for hexopyranose‐based carbohydrates , 2005, J. Comput. Chem..

[34]  H. Shu,et al.  Tumor Necrosis Factor-related Apoptosis-inducing Ligand Receptors Signal NF-κB and JNK Activation and Apoptosis through Distinct Pathways* , 1999, The Journal of Biological Chemistry.

[35]  A. Badley,et al.  Induction of Cell Death in Human Immunodeficiency Virus-Infected Macrophages and Resting Memory CD4 T Cells by TRAIL/Apo2L , 2001, Journal of Virology.

[36]  V. Dixit,et al.  Death receptors: signaling and modulation. , 1998, Science.

[37]  A. Liljas,et al.  Structure of the C-terminal domain of the ribosomal protein L7/L12 from Escherichia coli at 1.7 A. , 1987, Journal of molecular biology.

[38]  Charles H. Martin,et al.  Nature of the chromophore binding site of bacteriorhodopsin: the potential role of Arg82 as a principal counterion. , 1999, Biophysical journal.

[39]  M. Krauss,et al.  Dynamics of proton transfer in bacteriorhodopsin. , 2004, Journal of the American Chemical Society.

[40]  J G Chen,et al.  Cation binding by bacteriorhodopsin. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[41]  E. Querol,et al.  Contribution of Extracellular Glu Residues to the Structure and Function of Bacteriorhodopsin , 2001, The Journal of Biological Chemistry.

[42]  Andrea Musacchio,et al.  Crystal structure of a Src-homology 3 (SH3) domain , 1992, Nature.

[43]  H. G. Petersen,et al.  Error estimates on averages of correlated data , 1989 .

[44]  J. Holton,et al.  Crystallographic analysis of CD40 recognition and signaling by human TRAF2. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  H Luecke,et al.  Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. , 1998, Science.

[46]  T. Ebrey,et al.  Binding of a single divalent cation directly correlates with the blue-to-purple transition in bacteriorhodopsin. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Henning Walczak,et al.  TRAIL‐R2: a novel apoptosis‐mediating receptor for TRAIL , 1997, The EMBO journal.

[48]  Antoine Joux,et al.  Lattice Reduction: A Toolbox for the Cryptanalyst , 1998, Journal of Cryptology.

[49]  William Thomson,et al.  Baltimore Lectures On Molecular Dynamics And The Wave Theory Of Light , 1904 .

[50]  G. Vriend,et al.  Prediction of protein conformational freedom from distance constraints , 1997, Proteins.

[51]  J. Napier Purification of human erythropoietin. , 1972, British journal of haematology.

[52]  G Shimamoto,et al.  Osteoprotegerin: A Novel Secreted Protein Involved in the Regulation of Bone Density , 1997, Cell.

[53]  J. Tschopp,et al.  The molecular architecture of the TNF superfamily. , 2002, Trends in biochemical sciences.

[54]  H. Bekker,et al.  Unification of box shapes in molecular simulations , 1997 .

[55]  T. Kouyama,et al.  A novel three-dimensional crystal of bacteriorhodopsin obtained by successive fusion of the vesicular assemblies. , 1998, Journal of molecular biology.

[56]  V. Ramakrishnan,et al.  X‐ray crystallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha‐helix. , 1995, The EMBO journal.

[57]  Enrico A. Stura,et al.  Functional Mimicry of a Protein Hormone by a Peptide Agonist: The EPO Receptor Complex at 2.8 Å , 1996, Science.

[58]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[59]  M. Facciotti,et al.  Crystal structures of bR(D85S) favor a model of bacteriorhodopsin as a hydroxyl‐ion pump , 2004, FEBS letters.

[60]  C. Smith,et al.  The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. , 1997, Immunity.

[61]  M. Sheves,et al.  Specific binding sites for cations in bacteriorhodopsin. , 2001, Biophysical journal.

[62]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[63]  M. Bartlett Properties of Sufficiency and Statistical Tests , 1992 .

[64]  A. S. Gordon,et al.  Erythropoietin production in the fetus: role of the kidney and maternal anemia. , 1974, The Journal of laboratory and clinical medicine.

[65]  Helen M. Berman,et al.  Crystal structure of the unique RNA-binding domain of the influenza virus NS1 protein , 1997, Nature Structural Biology.

[66]  J. Lanyi,et al.  Location of a cation-binding site in the loop between helices F and G of bacteriorhodopsin as studied by 13C NMR. , 1999, Biophysical journal.

[67]  R. Clubb,et al.  Site-specific DNA binding using a variation of the double stranded RNA binding motif , 1998, Nature Structural Biology.

[68]  A. Mondragón,et al.  Crystal structure of the amino-terminal fragment of vaccinia virus DNA topoisomerase I at 1.6 A resolution. , 1994, Structure.

[69]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[70]  John C. Lee,et al.  Osteoprotegerin Is a Receptor for the Cytotoxic Ligand TRAIL* , 1998, The Journal of Biological Chemistry.

[71]  W I Wood,et al.  Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. , 1997, Science.

[72]  A. Dobson An introduction to generalized linear models , 1990 .

[73]  B. Beutler,et al.  The tumor necrosis factor ligand and receptor families. , 1996, The New England journal of medicine.

[74]  A. Erslev,et al.  Humoral regulation of red cell production. , 1953, Blood.

[75]  Duncan J. Murdoch,et al.  Orientlib: An R Package for Orientation Data , 2003 .

[76]  C. Gurney,et al.  Studies on erythropoiesis. VIII. The effect of nephrectomy on response to hypoxic anoxia. , 1958, The Journal of laboratory and clinical medicine.

[77]  P. Crozier,et al.  How environment supports a state: molecular dynamics simulations of two states in bacteriorhodopsin suggest lipid and water compensation. , 2004, Biophysical journal.

[78]  M. Murakami,et al.  Specific damage induced by X-ray radiation and structural changes in the primary photoreaction of bacteriorhodopsin. , 2002, Journal of molecular biology.

[79]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[80]  Murray J. Shear,et al.  Chemical Treatment of Tumors. V. Isolation of the Hemorrhage-Producing Fraction from Serratia marcescens (Bacillus prodigiosus) Culture Filtrate , 1943 .

[81]  T. Gibson,et al.  The solution structure of the first KH domain of FMR1, the protein responsible for the fragile X syndrome , 1997, Nature Structural Biology.

[82]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[83]  C A Smith,et al.  Identification and characterization of a new member of the TNF family that induces apoptosis. , 1995, Immunity.

[84]  A. Gurney,et al.  A novel receptor for Apo2L/TRAIL contains a truncated death domain , 1997, Current Biology.

[85]  H. Scheffé A METHOD FOR JUDGING ALL CONTRASTS IN THE ANALYSIS OF VARIANCE , 1953 .

[86]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[87]  V. D’Agati,et al.  Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. , 1996, Genes & development.

[88]  M. Ultsch,et al.  Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. , 1999, Molecular cell.

[89]  Karl Edman,et al.  Deformation of Helix C in the Low Temperature L-intermediate of Bacteriorhodopsin* , 2004, Journal of Biological Chemistry.

[90]  Chris Sander,et al.  The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies , 1995, J. Comput. Chem..

[91]  M. Sheves,et al.  The titrations of Asp‐85 and of the cation binding residues in bacteriorhodopsin are not coupled , 1999, FEBS letters.

[92]  S R Sprang,et al.  Crystallographic Evidence for Dimerization of Unliganded Tumor Necrosis Factor Receptor (*) , 1995, The Journal of Biological Chemistry.

[93]  Rudolf Jaenisch,et al.  Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor , 1995, Cell.

[94]  J. Lanyi,et al.  Binding of calcium ions to bacteriorhodopsin. , 1999, Biophysical journal.

[95]  K Nasmyth,et al.  Crystal structure of the DNA-binding domain of Mbp1, a transcription factor important in cell-cycle control of DNA synthesis. , 1997, Structure.

[96]  P Ghezzi,et al.  Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[97]  S. Edmondson,et al.  Solution structure of the DNA-binding protein Sac7d from the hyperthermophile Sulfolobus acidocaldarius. , 1995, Biochemistry.

[98]  S. Noskov,et al.  Free energy decomposition of protein-protein interactions. , 2001, Biophysical journal.

[99]  D. Stuart,et al.  Structure of the TRAIL–DR5 complex reveals mechanisms conferring specificity in apoptotic initiation , 1999, Nature Structural Biology.

[100]  E. Pebay-Peyroula,et al.  X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. , 1997, Science.

[101]  R. Gentz,et al.  An antagonist decoy receptor and a death domain-containing receptor for TRAIL. , 1997, Science.

[102]  S. S. Wilks CERTAIN GENERALIZATIONS IN THE ANALYSIS OF VARIANCE , 1932 .

[103]  A. Gronenborn,et al.  A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. , 1993, Science.

[104]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[105]  Giovanni Martinelli,et al.  IFNalpha-stimulated neutrophils and monocytes release a soluble form of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) displaying apoptotic activity on leukemic cells. , 2004, Blood.

[106]  Alessandra Villa,et al.  Calculation of the free energy of solvation for neutral analogs of amino acid side chains , 2002, J. Comput. Chem..

[107]  M. Krebs,et al.  Structural determinants of purple membrane assembly. , 2000, Biochimica et biophysica acta.

[108]  I. Brown,et al.  Empirical parameters for calculating cation–oxygen bond valences , 1976 .

[109]  M. Bellissent-Funel,et al.  Structure of high‐density amorphous water. II. Neutron scattering study , 1987 .

[110]  M. S. Lee,et al.  Crystal Structure of TRAIL-DR5 Complex Identifies a Critical Role of the Unique Frame Insertion in Conferring Recognition Specificity* , 2000, The Journal of Biological Chemistry.

[111]  Klaus Gerwert,et al.  Dynamics of water molecules in the bacteriorhodopsin trimer in explicit lipid/water environment. , 2004, Biophysical journal.

[112]  K. Schulten,et al.  STRUCTURE OF BACTERIORHODOPSIN and in situ ISOMERIZATION OF RETINAL: A MOLECULAR DYNAMICS STUDY * , 1991 .

[113]  Jur P. van den Berg,et al.  A method to obtain a near‐minimal‐volume molecular simulation of a macromolecule, using periodic boundary conditions and rotational constraints , 2004, J. Comput. Chem..

[114]  K. P. Murphy,et al.  Dissecting the energetics of a protein-protein interaction: the binding of ovomucoid third domain to elastase. , 1997, Journal of molecular biology.

[115]  H. Luecke Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. , 2000, Biochimica et biophysica acta.

[116]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[117]  R. Birge,et al.  The active site of bacteriorhodopsin. Two‐photon spectroscopic evidence for a positively charged chromophore binding site mediated by calcium , 1995 .

[118]  Unidirectional proton transfer mechanism in the L→M→N sequence of bacteriorhodopsin , 2003 .

[119]  D Cowburn,et al.  Solution structure and dynamics of the bioactive retroviral M domain from Rous sarcoma virus. , 1998, Journal of molecular biology.

[120]  P. Krammer,et al.  The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. , 2000, Experimental cell research.

[121]  Lukas D. Schuler,et al.  On the Choice of Dihedral Angle Potential Energy Functions for n-Alkanes , 2000 .

[122]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[123]  P. Nordlund,et al.  Crystal structure of common type acylphosphatase from bovine testis. , 1997, Structure.

[124]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[125]  R. Dubose,et al.  Cloning and Characterization of TRAIL-R3, a Novel Member of the Emerging TRAIL Receptor Family , 1997, The Journal of experimental medicine.

[126]  P. Krammer,et al.  Interleukin 1β-converting Enzyme Related Proteases/Caspases Are Involved in TRAIL-induced Apoptosis of Myeloma and Leukemia Cells , 1997, The Journal of cell biology.

[127]  H. H. Ku,et al.  Contributions to Probability and Statistics, Essays in Honor of Harold Hotelling. , 1961 .

[128]  A. Gratia,et al.  Le phénomène de Shwartzman dans le sarcome du Cobaye , 1931 .

[129]  A. Signore,et al.  Identification and Characterization of a Ligand-independent Oligomerization Domain in the Extracellular Region of the CD95 Death Receptor* , 1999, The Journal of Biological Chemistry.

[130]  W. Lehmann,et al.  Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[131]  Arul M. Chinnaiyan,et al.  The Receptor for the Cytotoxic Ligand TRAIL , 1997, Science.

[132]  M. H. Werner,et al.  Structural homology between the Rap30 DNA-binding domain and linker histone H5: implications for preinitiation complex assembly. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[133]  S Subbiah,et al.  Structure of the amino-terminal domain of phage 434 repressor at 2.0 A resolution. , 1989, Journal of molecular biology.

[134]  B. L. Welch THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN TWO MEANS WHEN THE POPULATION VARIANCES ARE UNEQUAL , 1938 .

[135]  S. Sprang,et al.  Seeing double: Crystal structures of the type I TNF receptor , 1996, Journal of molecular recognition : JMR.

[136]  Maria M. Reif,et al.  Local compressibilities of proteins: comparison of optical experiments and simulations for horse heart cytochrome-c. , 2005, Biophysical journal.

[137]  A. V. Kiselev,et al.  The structural basis of the functioning of bacteriorhodopsin: An overview , 1979, FEBS letters.

[138]  E. Landau,et al.  Lipidic cubic phase crystallization of bacteriorhodopsin and cryotrapping of intermediates: towards resolving a revolving photocycle. , 2000, Biochimica et biophysica acta.

[139]  K. Bauer,et al.  Activation of apoptosis by Apo-2 ligand is independent of FADD but blocked by CrmA , 1996, Current Biology.

[140]  Solution structure of the activator contact domain of the RNA polymerase alpha subunit. , 1995, Science.

[141]  Wilfred F. van Gunsteren,et al.  An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase , 2001, J. Comput. Chem..

[142]  W. Stoeckenius,et al.  SALT AND pH‐DEPENDENT CHANGES OF THE PURPLE MEMBRANE ABSORPTION SPECTRUM , 1984, Photochemistry and photobiology.

[143]  H. Khorana,et al.  Rapid long-range proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[144]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[145]  Jeno Reiczigel,et al.  A Bootstrap Test of Stochastic Equality of Two Populations , 2005 .

[146]  Klaus Schulten,et al.  Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins. , 2005, Biophysical journal.

[147]  H. Berendsen,et al.  Systematic analysis of domain motions in proteins from conformational change: New results on citrate synthase and T4 lysozyme , 1998, Proteins.

[148]  S. Marsters,et al.  Induction of Apoptosis by Apo-2 Ligand, a New Member of the Tumor Necrosis Factor Cytokine Family* , 1996, The Journal of Biological Chemistry.

[149]  Mark Proctor,et al.  The Solution Structure of the S1 RNA Binding Domain: A Member of an Ancient Nucleic Acid–Binding Fold , 1997, Cell.

[150]  I. Krantz,et al.  KILLER/DR5 is a DNA damage–inducible p53–regulated death receptor gene , 1997, Nature Genetics.

[151]  V. Lattanzio,et al.  Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative analysis of the lipid extract of the purple membrane. , 2002, Journal of lipid research.

[152]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .

[153]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[154]  D. Oesterhelt,et al.  Localization of glycolipids in membranes by in vivo labeling and neutron diffraction. , 1998, Molecular cell.

[155]  S. Constantinescu,et al.  Active and inactive orientations of the transmembrane and cytosolic domains of the erythropoietin receptor dimer. , 2003, Molecular cell.

[156]  F M Poulsen,et al.  Refinement of the three-dimensional solution structure of barley serine proteinase inhibitor 2 and comparison with the structures in crystals. , 1991, Journal of molecular biology.

[157]  W. Stoeckenius,et al.  Purple-to-blue transition of bacteriorhodopsin in a neutral lipid environment. , 1988, Biophysical journal.

[158]  V. Hornak,et al.  Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal. , 2002, Journal of molecular biology.

[159]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[160]  Jeremy C. Smith,et al.  Key role of electrostatic interactions in bacteriorhodopsin proton transfer. , 2004, Journal of the American Chemical Society.

[161]  J. Cladera,et al.  An extended x-ray absorption fine structure study of the high-affinity cation-binding site in the purple membrane. , 1996, Biophysical journal.

[162]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[163]  M. Sheves,et al.  Titration kinetics of Asp‐85 in bacteriorhodopsin: exclusion of the retinal pocket as the color‐controlling cation binding site , 1997, FEBS letters.

[164]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[165]  A. Murzin,et al.  NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N‐terminal domain of ribosomal protein S5. , 1995, The EMBO journal.

[166]  Wen He,et al.  An antagonist peptide–EPO receptor complex suggests that receptor dimerization is not sufficient for activation , 1998, Nature Structural Biology.

[167]  Correlation length of time series in statistical simulations , 1992 .

[168]  E. Corsini,et al.  Erythropoietin: a novel neuroprotective cytokine. , 2005, Neurotoxicology.

[169]  Tarun Jain,et al.  An all atom energy based computational protocol for predicting binding affinities of protein–ligand complexes , 2005, FEBS letters.

[170]  J. Tschopp,et al.  Cysteine 230 Is Essential for the Structure and Activity of the Cytotoxic Ligand TRAIL* , 2000, The Journal of Biological Chemistry.

[171]  R M Siegel,et al.  A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. , 2000, Science.

[172]  W. Ku,et al.  The crystal structure of the immunity protein of colicin E7 suggests a possible colicin-interacting surface. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[173]  G. Ciccotti,et al.  Molecular dynamics simulation of sucrose‐ and trehalose‐coated carboxy‐myoglobin , 2005, Proteins.

[174]  S. Hsieh,et al.  Enhanced Proliferation and Increased IFN-γ Production in T Cells by Signal Transduced Through TNF-Related Apoptosis-Inducing Ligand1 , 2001, The Journal of Immunology.

[175]  Serge Pérez,et al.  Geometrical features of calcium—carbohydrate interactions , 1983 .

[176]  A. Ortiz,et al.  1H and 15N NMR assignment and solution structure of the SH3 domain of spectrin: Comparison of unrefined and refined structure sets with the crystal structure , 1997, Journal of biomolecular NMR.

[177]  Charles L. Brooks,et al.  Modern protein force fields behave comparably in molecular dynamics simulations , 2002, J. Comput. Chem..

[178]  Richard Henderson,et al.  Molecular mechanism of vectorial proton translocation by bacteriorhodopsin , 2000, Nature.

[179]  R B Rose,et al.  Structure of an early intermediate in the M-state phase of the bacteriorhodopsin photocycle. , 2001, Biophysical journal.

[180]  K. F. Chan,et al.  Signaling by the TNF receptor superfamily and T cell homeostasis. , 2000, Immunity.

[181]  A. Erslev,et al.  In vitro production of erythropoietin by kidneys perfused with a serum-free solution. , 1974, Blood.

[182]  M. Audran,et al.  Drugs for Increasing Oxygen Transport and Their Potential Use in Doping , 2012 .

[183]  Bernard T. Thole,et al.  A general population analysis preserving the dipole moment , 1983 .

[184]  M Nayal,et al.  Valence screening of water in protein crystals reveals potential Na+ binding sites. , 1996, Journal of molecular biology.

[185]  Y. Kakuta,et al.  Atomic resolution structures of oxidized [4Fe-4S] ferredoxin from Bacillus thermoproteolyticus in two crystal forms: systematic distortion of [4Fe-4S] cluster in the protein. , 2002, Journal of molecular biology.

[186]  G L Gilliland,et al.  Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. , 1994, Biochemistry.

[187]  S R Sprang,et al.  Modularity in the TNF-receptor family. , 1998, Trends in biochemical sciences.

[188]  W. Stoeckenius,et al.  Effect of acid pH on the absorption spectra and photoreactions of bacteriorhodopsin. , 1979, Biochemistry.

[189]  A. Labarta,et al.  Experimental and theoretical characterization of the high-affinity cation-binding site of the purple membrane. , 1998, Biophysical journal.

[190]  D. Lawley A GENERALIZATION OF FISHER'S z TEST , 1938 .

[191]  M. Bellissent-Funel Structure and dynamics of water near hydrophilic surfaces , 1998 .

[192]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[193]  P. Scheurich,et al.  Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative , 2001, Oncogene.

[194]  J. Tschopp,et al.  Characterization of two receptors for TRAIL. , 1997, FEBS letters.

[195]  T. Kigawa,et al.  A helix–turn–helix structure unit in human centromere protein B (CENP‐B) , 1998, The EMBO journal.

[196]  Ad Bax,et al.  Validation of Protein Structure from Anisotropic Carbonyl Chemical Shifts in a Dilute Liquid Crystalline Phase , 1998 .

[197]  E. Goldwasser,et al.  Role of the Kidney in Erythropoiesis , 1957, Nature.

[198]  R. Varadarajan,et al.  Discrepancies between the NMR and X-ray structures of uncomplexed barstar: analysis suggests that packing densities of protein structures determined by NMR are unreliable. , 1998, Biochemistry.

[199]  V. Gordeliy,et al.  Water molecules and hydrogen-bonded networks in bacteriorhodopsin--molecular dynamics simulations of the ground state and the M-intermediate. , 2005, Biophysical journal.

[200]  K. Schulten,et al.  Molecular dynamics simulation of bacteriorhodopsin's photoisomerization using ab initio forces for the excited chromophore. , 2003, Biophysical journal.

[201]  D. Cosman The hematopoietin receptor superfamily. , 1993, Cytokine.

[202]  Ian J. Bush,et al.  The GAMESS-UK electronic structure package: algorithms, developments and applications , 2005 .

[203]  Akinori Kidera,et al.  Surface of bacteriorhodopsin revealed by high-resolution electron crystallography , 1997, Nature.

[204]  A. J. Stam,et al.  Estimation of statistical errors in molecular simulation calculations , 1986 .

[205]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[206]  S. Opella,et al.  Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. , 1997, Biochemistry.

[207]  A. W. Schüttelkopf,et al.  PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.

[208]  Andrea Amadei,et al.  Molecular dynamics simulations with constrained roto-translational motions: Theoretical basis and statistical mechanical consistency , 2000 .

[209]  R L Kassel,et al.  An endotoxin-induced serum factor that causes necrosis of tumors. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[210]  W. Stoeckenius,et al.  Effect of lipid surface charges on the purple-to-blue transition of bacteriorhodopsin. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[211]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[212]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[213]  M. Engelhard,et al.  Asp85 is the only internal aspartic acid that gets protonated in the M intermediate and the purple‐to‐blue transition of bacteriorhodopsin A solid‐state13C CP‐MAS NMR investigation , 1992, FEBS letters.

[214]  M. James,et al.  Crystal and molecular structure of the serine proteinase inhibitor CI-2 from barley seeds. , 1988, Biochemistry.

[215]  R. Kurzrock,et al.  A phase I trial of intravenously-administered recombinant tumor necrosis factor-alpha in cancer patients. , 1988, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[216]  Duan Yang,et al.  Side-chain contributions to membrane protein structure and stability. , 2004, Journal of molecular biology.

[217]  L Serrano,et al.  The order of secondary structure elements does not determine the structure of a protein but does affect its folding kinetics. , 1995, Journal of molecular biology.

[218]  B. Hess,et al.  Similarities between principal components of protein dynamics and random diffusion , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[219]  Stephen W. Fesik,et al.  NMR structure and mutagenesis of the FADD (Mort1) death-effector domain , 1998, Nature.

[220]  D. R.,et al.  Empirical Bond-Strength-Bond-Length Curves for Oxides , 2001 .

[221]  D. Banner,et al.  Crystal structure of the soluble human 55 kd TNF receptor-human TNFβ complex: Implications for TNF receptor activation , 1993, Cell.

[222]  M. Benfatto,et al.  A quantitative XANES analysis of the calcium high-affinity binding site of the purple membrane. , 2004, Biophysical journal.

[223]  C Menzel,et al.  Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 A resolution. , 1999, Structure.

[224]  A. Kidera,et al.  The structure of bacteriorhodopsin at 3.0 A resolution based on electron crystallography: implication of the charge distribution. , 1999, Journal of molecular biology.

[225]  M. El-Sayed,et al.  The Ca2+ binding to deionized monomerized and to retinal removed bacteriorhodopsin. , 1995, Biophysical journal.

[226]  S. Srinivasula,et al.  Identification and Molecular Cloning of Two Novel Receptors for the Cytotoxic Ligand TRAIL* , 1997, The Journal of Biological Chemistry.

[227]  A. Gronenborn,et al.  Solution structure of the I gamma subdomain of the Mu end DNA-binding domain of phage Mu transposase. , 1997, Journal of molecular biology.

[228]  E. Solary,et al.  Redistribution of CD95, DR4 and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cells , 2004, Oncogene.

[229]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[230]  Yeon-Woo Ryu,et al.  Homomeric and heteromeric interactions of the extracellular domains of death receptors and death decoy receptors. , 2005, Biochemical and biophysical research communications.

[231]  J. C. Phillips,et al.  Molecular Dynamics Study of Bacteriorhodopsin and the Purple Membrane , 2001 .

[232]  J. Bowie,et al.  Crystallization of bacteriorhodopsin from bicelle formulations at room temperature , 2005, Protein science : a publication of the Protein Society.

[233]  I. Wilson,et al.  Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. , 1999, Science.

[234]  G. Ciccotti,et al.  Atomic mean-square displacements in proteins by molecular dynamics: a case for analysis of variance. , 2004, Biophysical journal.

[235]  J K Frederiksen,et al.  Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. , 2000, Science.

[236]  A. Amadei,et al.  On the convergence of the conformational coordinates basis set obtained by the essential dynamics analysis of proteins' molecular dynamics simulations , 1999, Proteins.

[237]  Walter Kolch,et al.  Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. , 2004, Cytokine & growth factor reviews.