Threshold quantile autoregressive models
暂无分享,去创建一个
Gabriel Montes-Rojas | Jose Olmo | Gabriel Montes-Rojas | Jose Olmo | A. Galvao Jr. | Antonio F. Galvao
[1] H. Tong,et al. Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .
[2] B. Hansen. Sample Splitting and Threshold Estimation , 2000 .
[3] Jianqing Fan,et al. Quantile autoregression. Commentary , 2006 .
[4] Roger Koenker,et al. Quantile Autoregression , 2006 .
[5] Zhijie Xiao,et al. Testing for parameter stability in quantile regression models , 2008 .
[6] S. Geer. Empirical Processes in M-Estimation , 2000 .
[7] Ruey S. Tsay,et al. Testing and Modeling Threshold Autoregressive Processes , 1989 .
[8] Daniel B. Nelson. CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .
[9] Cathy W. S. Chen,et al. On a threshold heteroscedastic model , 2006 .
[10] J. Coakley,et al. Evaluating the Persistence and Structuralist Theories of Unemployment from a Nonlinear Perspective , 2000 .
[11] Herold Dehling,et al. Empirical Process Techniques for Dependent Data , 2002 .
[12] V. Chernozhukov,et al. QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.
[13] H. Tong. Non-linear time series. A dynamical system approach , 1990 .
[14] Mark P. Taylor,et al. The Role of Asymmetries and Regime Shifts in the Term Structure of Interest Rates , 2005 .
[15] D. Andrews. Tests for Parameter Instability and Structural Change with Unknown Change Point , 1993 .
[16] Lucio Sarno,et al. Nonlinearity in Deviations from Uncovered Interest Parity: An Explanation of the Forward Bias Puzzle , 2006, SSRN Electronic Journal.
[17] Holger Dette,et al. Non‐crossing non‐parametric estimates of quantile curves , 2008 .
[18] L. Glosten,et al. On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .
[19] Politis,et al. [Springer Series in Statistics] Subsampling || Subsampling for Stationary Time Series , 1999 .
[20] Gary Koop,et al. Do recessions permanently change output , 1993 .
[21] D. Andrews. Tests for Parameter Instability and Structural Change with Unknown Change Point , 1993 .
[22] Zhongjun Qu. Testing for Structural Change in Regression Quantiles , 2007 .
[23] Roger Koenker,et al. An Empirical Quantile Function for Linear Models with | operatornameiid Errors , 1982 .
[24] E. Mammen. Nonparametric regression under qualitative smoothness assumptions , 1991 .
[25] K. Chan,et al. Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model , 1993 .
[26] Qi Li,et al. On Hotelling's Approach to Hypothesis Testing When a Nuisance Parameter Is Present Only under the Alternative , 2007 .
[27] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[28] Hung Man Tong,et al. Threshold models in non-linear time series analysis. Lecture notes in statistics, No.21 , 1983 .
[29] D. Ruppert,et al. Trimmed Least Squares Estimation in the Linear Model , 1980 .
[30] Roger Koenker,et al. Inequality constrained quantile regression , 2005 .
[31] Yuzhi Cai. Forecasting for quantile self-exciting threshold autoregressive time series models , 2010 .
[32] S. R. Jammalamadaka,et al. Empirical Processes in M-Estimation , 2001 .
[33] C. Nelson,et al. Trends and random walks in macroeconmic time series: Some evidence and implications , 1982 .
[34] Jerry Coakley,et al. Numerical Issues in Threshold Autoregressive Modeling of Time Series , 2003 .
[35] H. Tong,et al. ON ESTIMATING THRESHOLDS IN AUTOREGRESSIVE MODELS , 1986 .
[36] Xuming He. Quantile Curves without Crossing , 1997 .
[37] Kengo Kato,et al. Asymptotics for argmin processes: Convexity arguments , 2009, J. Multivar. Anal..
[38] Christian Hansen,et al. Instrumental quantile regression inference for structural and treatment effect models , 2006 .
[39] Roger Koenker,et al. An empirical quantile function for linear models with iid errors , 1981 .
[40] P. Massart,et al. Invariance principles for absolutely regular empirical processes , 1995 .
[41] D. Andrews,et al. Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative , 1992 .
[42] R. Koenker,et al. Regression Quantiles , 2007 .
[43] B. Hansen,et al. Inference in TAR Models , 1997 .
[44] J. Zakoian. Threshold heteroskedastic models , 1994 .
[45] Kung-Sik Chan,et al. Limiting properties of the least squares estimator of a continuous threshold autoregressive model , 1998 .
[46] J. Stander,et al. Quantile self‐exciting threshold autoregressive time series models , 2007 .
[47] Bruce E. Hansen,et al. Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .
[48] M. Kosorok. Introduction to Empirical Processes and Semiparametric Inference , 2008 .
[49] R. Davies. Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .
[50] Mehmet Caner. A NOTE ON LEAST ABSOLUTE DEVIATION ESTIMATION OF A THRESHOLD MODEL , 2002, Econometric Theory.
[51] Roger Koenker,et al. Conditional Quantile Estimation and Inference for Arch Models , 1996, Econometric Theory.
[52] J. Coakley,et al. Testing for Sign and Amplitude Asymmetries Using Threshold Autoregressions , 2006 .
[53] Paul Waltman,et al. A Threshold Model , 1974 .
[54] M. A. Arcones,et al. Central limit theorems for empirical andU-processes of stationary mixing sequences , 1994 .
[55] R. Davies. Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .
[56] T. Teräsvirta. Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models , 1994 .
[57] Cathy W. S. Chen,et al. Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity , 2013, Comput. Stat..
[58] Jose Olmo,et al. A Nonlinear Threshold Model for the Dependence of Extremes of Stationary Sequences , 2012 .