Analytic Approximation of the Off-axis Modulation Transfer Function of the Eye

Published experimental measurements of the ocular modulation transfer function (MTF) in the peripheral field are approximated by the expression T(f) = exp[-(f/fc)n], where T(f), f, fc, and n are modulation transfer, spatial frequency, spatial frequency constant and MTF index, respectively. It is shown that n (which describes the shape of the MTF) remains relatively constant at about 0.9 for field angles out to 40 deg but fc (which defines the spatial frequency scaling) declines steeply over this range, depending upon the pupil diameter and conditions of focus. The oblique astigmatism of the eye plays a major role in the off-axis changes in fc at field angles > or = 20 deg. The approximation may be useful in allowing the form of the degraded optical stimulus in studies of the peripheral retinal function to be evaluated.

[1]  A. Arnaud,et al.  in the Approximation , 1974 .

[2]  George C. Woo,et al.  CLINICAL VISUAL OPTICS , 1991 .

[3]  J. Simon,et al.  Influence of the size of test field employed in measurements of modulation transfer function of the eye. , 1973, Journal of the Optical Society of America.

[4]  A. Kooijman,et al.  Light distribution on the retina of a wide-angle theoretical eye. , 1983, Journal of the Optical Society of America.

[5]  O. Pomerantzeff,et al.  Retinal illuminance using a wide-angle model of the eye. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[6]  R. Navarro,et al.  Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  F. W. Weymouth Visual sensory units and the minimal angle of resolution. , 1958, American journal of ophthalmology.

[8]  Neville A. McBrien,et al.  The effect of accommodation on oblique astigmatism and field curvature of the human eye , 1988 .

[9]  D. Tolhurst,et al.  Amplitude spectra of natural images , 1992 .

[10]  W. Lotmar,et al.  Peripheral astigmatism in the human eye: experimental data and theoretical model predictions. , 1974, Journal of the Optical Society of America.

[11]  J. Gorrand,et al.  Diffusion of the human retina and quality of the optics of the eye on the fovea and the peripheral retina , 1979, Vision Research.

[12]  M Millodot,et al.  Peripheral Refraction in Aphakic Eyes , 1984, American journal of optometry and physiological optics.

[13]  A. van Meeteren,et al.  Calculations on the Optical Modulation Transfer Function of the Human Eye for White Light , 1974 .

[14]  David R. Williams,et al.  Off-axis optical quality and retinal sampling in the human eye , 1996, Vision Research.

[15]  W. N. Charman,et al.  Chapter 1 The retinal image in the human eye , 1983 .

[16]  R. Navarro,et al.  Odd aberrations and double-pass measurements of retinal image quality. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  R Navarro,et al.  Phase transfer and point-spread function of the human eye determined by a new asymmetric double-pass method. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  Burkhart Fischer,et al.  Optische und neuronale grundlagen der visuellen bildübertragung: Einheitliche mathematische behandlung des retinalen bildes und der erregbarkeit von retinalen ganglienzellen mit hilfe der linearen systemtheorie , 1972 .

[19]  David Williams,et al.  Modulation transfer of the human eye as a function of retinal eccentricity , 1993 .

[20]  Ronald B. Rabbetts,et al.  Clinical Visual Optics , 1984 .

[21]  Merits of the gaussian moment in judging optical line spread widths , 1979, Vision Research.

[22]  Glenn A. Fry,et al.  II The Optical Performance of the Human Eye , 1970 .

[23]  W. Lotmar Theoretical Eye Model with Aspherics , 1971 .

[24]  An analytical approximation for the modulation transfer function of the eye. , 1974 .

[25]  W. Charman,et al.  Off-axis image quality in the human eye , 1981, Vision Research.

[26]  C. E. Ferree,et al.  INTERPRETATION OF REFRACTIVE CONDITIONS IN THE PERIPHERAL FIELD OF VISION: A FURTHER STUDY , 1933 .

[27]  D. Brainard,et al.  Double-pass and interferometric measures of the optical quality of the eye. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  H. Spekreijse,et al.  An improved mathematical description of the foveal visual point spread function with parameters for age, pupil size and pigmentation , 1993, Vision Research.

[29]  Rainer Ro¨hler,et al.  Die abbildungseigenschaften der augenmedien , 1962 .

[30]  C. B. Johnson,et al.  Point-Spread Functions, Line-Spread Functions, and Edge-Response Functions Associated with MTFs of the Form exp [ - (omega /omega(c))(n)]. , 1973, Applied optics.

[31]  N Drasdo,et al.  Complementary components and local variations of the pattern electroretinogram. , 1987, Investigative ophthalmology & visual science.

[32]  Duncan T. Moore,et al.  Tutorials in optics , 1992 .

[33]  W N Charman,et al.  Optical Aspects of Tolerances to Uncorrected Ocular Astigmatism , 1993, Optometry and vision science : official publication of the American Academy of Optometry.

[34]  H. H. Hopkins The frequency response of a defocused optical system , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  R. Navarro,et al.  Modulation transfer of the human eye as a function of retinal eccentricity. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[36]  C. B. Johnson A convenient form of graph paper for determination of electrooptical device modulation transfer function parameters , 1973 .

[37]  H Krueger,et al.  On the approximation of the optical modulation transfer function (MTF) by analytical functions. , 1973, Vision research.

[38]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[39]  D. Tolhurst,et al.  Amplitude spectra of natural images. , 1992, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[40]  S J Anderson,et al.  Peripheral spatial vision: limits imposed by optics, photoreceptors, and receptor pooling. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[41]  M Millodot,et al.  Effect of Ametropia on Peripheral Refraction , 1981, American journal of optometry and physiological optics.

[42]  I Iglesias,et al.  Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye's optical system. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[43]  N. Drasdo,et al.  The effect of optical degradation on the contrast sensitivity function measured at the fovea and in the periphery , 1987, Vision Research.

[44]  David Whitaker,et al.  The influence of eccentricity on position and movement acuities as revealed by spatial scaling , 1992, Vision Research.

[45]  C. E. Ferree,et al.  Refractive Asymmetry in the Temporal and Nasal Halves of the Visual Fiel , 1932 .

[46]  Geometrical-optical Treatment of Frequency Response , 1957 .

[47]  W N Charman,et al.  Astigmatism, accommodation, the oblique effect and meridional amblyopia , 1993, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[48]  N Drasdo,et al.  Non-linear projection of the retinal image in a wide-angle schematic eye. , 1974, The British journal of ophthalmology.

[49]  W. Charman,et al.  Optical Image Quality in the Peripheral Retina , 1978, American journal of optometry and physiological optics.

[50]  L. Thibos,et al.  Retinal limits to the detection and resolution of gratings. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[51]  R. Gubisch,et al.  Optical Performance of the Human Eye , 1967 .

[52]  C. E. Ferree,et al.  REFRACTION FOR THE PERIPHERAL FIELD OF VISION , 1931 .

[53]  F Rempt,et al.  Peripheral retinoscopy and the skiagram. , 1971, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[54]  W N Charman,et al.  A simple parametric model of the human ocular modulation transfer function , 1991, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[55]  P Artal,et al.  Simultaneous measurement of two-point-spread functions at different locations across the human fovea. , 1992, Applied optics.

[56]  F. Campbell,et al.  Optical quality of the human eye , 1966, The Journal of physiology.

[57]  G. Westheimer,et al.  Light distribution in the image formed by the living human eye. , 1962, Journal of the Optical Society of America.

[58]  M. De The influence of astigmatism on the response function of an optical system , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[59]  David R. Williams,et al.  Seeing through the photoreceptor mosaic , 1986, Trends in Neurosciences.

[60]  J. Rovamo,et al.  Modelling contrast sensitivity as a function of retinal illuminance and grating area , 1994, Vision Research.

[61]  Michel Millodot,et al.  Refraction of the periphery of the eye , 1974 .

[62]  A. Derrington,et al.  Refraction, aliasing, and the absence of motion reversals in peripheral vision , 1995, Vision Research.

[63]  P Artal,et al.  Effects of aging in retinal image quality. , 1993, Journal of the Optical Society of America. A, Optics and image science.