Modified electrode by using magnetic core–shell Fe3O4@SiO2/MWCNT nanoparticles for determination of 6-mercaptopurine

[1]  Ho Won Jang,et al.  Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination , 2020, RSC advances.

[2]  Ho Won Jang,et al.  Recent Advances in Applications of Voltammetric Sensors Modified with Ferrocene and Its Derivatives , 2020, ACS omega.

[3]  H. Beitollahi,et al.  Disposable electrochemical sensor based on modified screen printed electrode for sensitive cabergoline quantification , 2019, Journal of Electroanalytical Chemistry.

[4]  J. Ngila,et al.  Chemical Vapour Deposition of MWCNT on Silica Coated Fe3O4 and Use of Response Surface Methodology for Optimizing the Extraction of Organophosphorus Pesticides from Water , 2019, International journal of analytical chemistry.

[5]  P. Mikuš,et al.  Novel electrochemical strategy for determination of 6-mercaptopurine using anodically pretreated boron-doped diamond electrode , 2019, Journal of Electroanalytical Chemistry.

[6]  Larry R. FaulknerJohn Electrochemical Methods Fundamentals And Applications 2nd Edition , 2019 .

[7]  M. Ganjali,et al.  Voltammetric Determination of Acetaminophen and Tryptophan Using a Graphite Screen Printed Electrode Modified with Functionalized Graphene Oxide Nanosheets Within a Fe3O4@SiO2 Nanocomposite , 2019, Iranian journal of pharmaceutical research : IJPR.

[8]  H. Beitollahi,et al.  Nonenzymatic coated screen-printed electrode for electrochemical determination of acetylcholine , 2018, Micro and Nano Systems Letters.

[9]  A. Nosal-Wiercińska,et al.  The importance of the active complexes of 6 - mercaptopurine with Bi(III) with regards to kinetics and electrode mechanism changes in the presence of non-ionic surfactants , 2018, Journal of Electroanalytical Chemistry.

[10]  R. Hosseinzadeh,et al.  Electrochemical determination of ascorbic acid, uric acid and folic acid using carbon paste electrode modified with novel synthesized ferrocene derivative and core-shell magnetic nanoparticles in aqueous media , 2018, Applied Organometallic Chemistry.

[11]  Z. Es’haghi,et al.  Electrochemical biosensing platform based on molecularly imprinted polymer reinforced by ZnO–graphene capped quantum dots for 6-mercaptopurine detection , 2018, Electrochimica Acta.

[12]  H. Beitollahi,et al.  Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite , 2018 .

[13]  H. Beitollahi,et al.  Voltammetric Determination of Isoproterenol using a Graphene Oxide Nano Sheets Paste Electrode , 2018, Journal of Analytical Chemistry.

[14]  S. Supandi,et al.  Quantification of 6-Mercaptopurine and Its Metabolites in Patients with Acute Lympoblastic Leukemia Using Dried Blood Spots and UPLC-MS/MS , 2018, Scientia pharmaceutica.

[15]  Z. Zelinková,et al.  Capillary Electrophoresis Hyphenated with Mass Spectrometry for Determination of Inflammatory Bowel Disease Drugs in Clinical Urine Samples , 2017, Molecules.

[16]  Karuna A. Rawat,et al.  One-pot synthesis of silver nanoparticles using folic acid as a reagent for colorimetric and fluorimetric detections of 6-mercaptopurine at nanomolar concentration , 2017 .

[17]  M. Peppelenbosch,et al.  Determination of thiopurine S‐methyltransferase activity by hydrophilic interaction liquid chromatography hyphenated with mass spectrometry , 2017, Journal of pharmaceutical and biomedical analysis.

[18]  M. Ganjali Application of Fe3O4@SiO2/MWCNT Film on Glassy Carbon Electrode for the Sensitive Electroanalysis of Levodopa , 2017 .

[19]  Zhi-Qi Zhang,et al.  An efficient ratiometric fluorescence sensor based on metal-organic frameworks and quantum dots for highly selective detection of 6-mercaptopurine. , 2017, Biosensors & bioelectronics.

[20]  H. Beitollahi,et al.  Determination of hydroxylamine using a carbon paste electrode modified with graphene oxide nano sheets , 2017, Russian Journal of Electrochemistry.

[21]  S. Nandibewoor,et al.  CTAB functionalized multiwalled carbon nanotube composite modified electrode for the determination of 6-mercaptopurine , 2017 .

[22]  P. Mikuš,et al.  Determination of Drugs for Crohn’s Disease Treatment in Pharmaceuticals by Capillary Electrophoresis Hyphenated with Tandem Mass Spectrometry , 2017, Chromatographia.

[23]  A. F. Shojaei,et al.  Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. , 2016, Biosensors & bioelectronics.

[24]  Sakineh Esfandiari Baghbamidi Voltammetric Sensor Based on 1-Benzyl-4-ferrocenyl-1H- [1,2,3]-triazole /Carbon Nanotube Modified Glassy Carbon Electrode; Detection of Hydrochlorothiazide in the Presence of Propranolol , 2016 .

[25]  A. S. Attia,et al.  Development and validation of LC-MS/MS assay for the simultaneous determination of methotrexate, 6-mercaptopurine and its active metabolite 6-thioguanine in plasma of children with acute lymphoblastic leukemia: Correlation with genetic polymorphism. , 2016, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[26]  M. Torkzadeh-Mahani,et al.  A magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of amlodipine and hydrochlorothiazide , 2016 .

[27]  H. Beitollahi,et al.  Electrocatalytic Determination of Hydrazine and Phenol Using a Carbon Paste Electrode Modified with Ionic Liquids and Magnetic Core-shell Fe3O4@SiO2/MWCNT Nanocomposite , 2016 .

[28]  Jingdong Peng,et al.  Resonance light scattering determination of 6-mercaptopurine coupled with HPLC technique. , 2016, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[29]  Xinsheng Liu,et al.  Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode. , 2016, Talanta.

[30]  M. Arvand,et al.  Simultaneous Voltammetric Determination of Synthetic Colorants in Foods Using a Magnetic Core–Shell Fe3O4@SiO2/MWCNTs Nanocomposite Modified Carbon Paste Electrode , 2016, Food Analytical Methods.

[31]  Huimin Duan,et al.  Bioreceptor multi-walled carbon nanotubes@Fe3O4@SiO2–surface molecular imprinted polymer in an ultrasensitive chemiluminescent biosensor for bovine hemoglobin , 2015 .

[32]  Hanqi Zhang,et al.  Application of silver nanoparticles decorated with β-cyclodextrin in determination of 6-mercaptopurine by surface-enhanced Raman spectroscopy , 2015 .

[33]  P. Biparva,et al.  Silver nanoparticles enhanced a novel TCPO-H₂O₂-safranin O chemiluminescence system for determination of 6-mercaptopurine. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[34]  Zhongpin Zhang,et al.  Label-free surface-enhanced Raman scattering imaging to monitor the metabolism of antitumor drug 6-mercaptopurine in living cells. , 2014, Analytical chemistry.

[35]  M. Arvand,et al.  Magnetic core-shell Fe₃O₄@SiO₂/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid. , 2014, Materials science & engineering. C, Materials for biological applications.

[36]  C. Tu,et al.  Spectrophotometric Determination of 6-Mercaptopurine in Pharmaceutical Sample Using Fe(III)-Potassium Ferricyanide System , 2014 .

[37]  K. M. Naik,et al.  RP-HPLC Method for the Estimation of 6-Mercaptopurine in spiked human plasma and pharmaceutical formulations , 2013, Journal of Analytical Chemistry.

[38]  W. Młynarski,et al.  Determination of urinary 6-mercaptopurine and three of its metabolites by HPLC-UV coupled with the iodine-azide reaction. , 2013, Bioanalysis.

[39]  B. Rezaei,et al.  Voltammetric determination of 6-mercaptopurine using a multiwall carbon nanotubes paste electrode in the presence of isoprenaline as a mediator , 2013 .

[40]  Weishan Li,et al.  Fabrication and evaluation of [Co(phen)2L]3+-modified DNA-MWCNT and SDS-MWCNT electrodes for electrochemical detection of 6-mercaptopurine , 2012 .

[41]  S. Ai,et al.  Multi-walled carbon nanotube-chitosan/poly(amidoamine)/DNA nanocomposite modified gold electrode for determination of dopamine and uric acid under coexistence of ascorbic acid , 2011 .

[42]  H. Yamauchi,et al.  6-Mercaptopurine (6-MP) induces cell cycle arrest and apoptosis of neural progenitor cells in the developing fetal rat brain. , 2009, Neurotoxicology and teratology.

[43]  Weishan Li,et al.  Voltammetric determination of 6-mercaptopurine using [Co(phen)3]3+/MWNT modified graphite electrode , 2008 .

[44]  S. Sahasranaman,et al.  Clinical pharmacology and pharmacogenetics of thiopurines , 2008, European Journal of Clinical Pharmacology.

[45]  G. Wang,et al.  Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles , 2008 .

[46]  Y. Médard,et al.  Pharmacokinetics and distribution of 6-mercaptopurine administered intravenously in children with lymphoblastic leukaemia , 1997, European Journal of Clinical Pharmacology.

[47]  H. Blom,et al.  Effects on transmethylation by high-dose 6-mercaptopurine and methotrexate infusions during consolidation treatment of acute lymphoblastic leukemia. , 1996, Biochemical pharmacology.

[48]  A. Chalmers A spectrophotometric method for the estimation of urinary azathioprine, 6-mercaptopurine, and 6-thiouric acid. , 1975, Biochemical medicine.