What's inside the black-box?: a genetic programming method for interpreting complex machine learning models

Interpreting state-of-the-art machine learning algorithms can be difficult. For example, why does a complex ensemble predict a particular class? Existing approaches to interpretable machine learning tend to be either local in their explanations, apply only to a particular algorithm, or overly complex in their global explanations. In this work, we propose a global model extraction method which uses multi-objective genetic programming to construct accurate, simplistic and model-agnostic representations of complex black-box estimators. We found the resulting representations are far simpler than existing approaches while providing comparable reconstructive performance. This is demonstrated on a range of datasets, by approximating the knowledge of complex black-box models such as 200 layer neural networks and ensembles of 500 trees, with a single tree.

[1]  Luís Torgo,et al.  OpenML: networked science in machine learning , 2014, SKDD.

[2]  A. Shamsai,et al.  Multi-objective Optimization , 2017, Encyclopedia of Machine Learning and Data Mining.

[3]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[4]  RadhaKanta Mahapatra,et al.  Business data mining - a machine learning perspective , 2001, Inf. Manag..

[5]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[6]  J. Shaffer Multiple Hypothesis Testing , 1995 .

[7]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[8]  Graham W. Taylor,et al.  Deconvolutional networks , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[10]  Paulo J. G. Lisboa,et al.  Making machine learning models interpretable , 2012, ESANN.

[11]  Adam Tauman Kalai,et al.  Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings , 2016, NIPS.

[12]  John R. Koza,et al.  Genetic programming as a means for programming computers by natural selection , 1994 .

[13]  Filip Karlo Dosilovic,et al.  Explainable artificial intelligence: A survey , 2018, 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).

[14]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[15]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[16]  A. Azzouz 2011 , 2020, City.

[17]  Been Kim,et al.  Towards A Rigorous Science of Interpretable Machine Learning , 2017, 1702.08608.

[18]  Jude W. Shavlik,et al.  in Advances in Neural Information Processing , 1996 .

[19]  Latanya Sweeney,et al.  Discrimination in online ad delivery , 2013, CACM.

[20]  Margo I. Seltzer,et al.  Scalable Bayesian Rule Lists , 2016, ICML.

[21]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[22]  Rich Caruana,et al.  Model compression , 2006, KDD '06.

[23]  Aditya K. Ghose,et al.  Explainable Software Analytics , 2018, 2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER).

[24]  Mengjie Zhang,et al.  Multiclass Object Classification Using Genetic Programming , 2004, EvoWorkshops.

[25]  R. Weisberg A-N-D , 2011 .

[26]  Osbert Bastani,et al.  Interpretability via Model Extraction , 2017, ArXiv.

[27]  Klaus-Robert Müller,et al.  Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models , 2017, ArXiv.

[28]  Cynthia Rudin,et al.  Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model , 2015, ArXiv.

[29]  Johannes Gehrke,et al.  Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission , 2015, KDD.

[30]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[31]  David J. Montana,et al.  Strongly Typed Genetic Programming , 1995, Evolutionary Computation.

[32]  Vic Ciesielski,et al.  Representing classification problems in genetic programming , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).