Nonparametric Denoising of Signals with Unknown Local Structure, I: Oracle Inequalities

[1]  A. Juditsky,et al.  Nonparametric denoising signals of unknown local structure, II: Nonparametric function recovery , 2010 .

[2]  A. Nemirovski,et al.  Nonparametric denoising Signals of Unknown Local Structure, II: Nonparametric Regression Estimation , 2009, 0903.0913.

[3]  O. Lepski,et al.  Structural adaptation via Lp-norm oracle inequalities , 2007, 0704.2492.

[4]  Alexander Goldenshluger,et al.  Structural adaptation via $$\mathbb{L}_p$$ -norm oracle inequalities , 2009 .

[5]  T. Cai,et al.  On Adaptive Estimation of Linear Functionals , 2005, math/0602299.

[6]  T. Tony Cai,et al.  Adaptive estimation of linear functionals under different performance measures , 2005 .

[7]  A. Juditsky,et al.  Denoising Signals of Unknown Local Structure , 2005 .

[8]  A. Goldenshluger On Spatial Adaptive Estimation of Nonparametric Regression , 2004 .

[9]  J. Polzehl,et al.  Image denoising: Pointwise adaptive approach , 2003 .

[10]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[11]  E. Candès,et al.  Recovering edges in ill-posed inverse problems: optimality of curvelet frames , 2002 .

[12]  Xiaoming Huo,et al.  Beamlets and Multiscale Image Analysis , 2002 .

[13]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[14]  Emmanuel J. Candès,et al.  Curvelets and Curvilinear Integrals , 2001, J. Approx. Theory.

[15]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[16]  P. Massart,et al.  Gaussian model selection , 2001 .

[17]  David L. Donoho,et al.  Ridge Functions and Orthonormal Ridgelets , 2001, J. Approx. Theory.

[18]  D. Donoho Sparse Components of Images and Optimal Atomic Decompositions , 2001 .

[19]  L. Birge,et al.  An alternative point of view on Lepski's method , 2001 .

[20]  David L. Donoho,et al.  Orthonormal Ridgelets and Linear Singularities , 2000, SIAM J. Math. Anal..

[21]  Arkadi Nemirovski,et al.  Topics in Non-Parametric Statistics , 2000 .

[22]  T. Cai Adaptive wavelet estimation : A block thresholding and oracle inequality approach , 1999 .

[23]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[24]  O. Lepski,et al.  Adaptive non-parametric estimation of smooth multivariate functions , 1999 .

[25]  D. Donoho,et al.  Tight frames of k-plane ridgelets and the problem of representing objects that are smooth away from d-dimensional singularities in Rn. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  P. Massart,et al.  Risk bounds for model selection via penalization , 1999 .

[27]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[28]  A. Tsybakov Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes , 1998 .

[29]  S. Efromovich On global and pointwise adaptive estimation , 1998 .

[30]  J. Polzehl,et al.  Adaptive weights smoothing with applications to image restoration , 1998 .

[31]  Vladimir Spokoiny,et al.  ESTIMATION OF A FUNCTION WITH DISCONTINUITIES VIA LOCAL POLYNOMIAL FIT WITH AN ADAPTIVE WINDOW CHOICE , 1998 .

[32]  V. Spokoiny,et al.  Optimal pointwise adaptive methods in nonparametric estimation , 1997 .

[33]  Pierre Bernard,et al.  Lectures on Probability Theory and Statistics: Ecole d'Ete de Probabilites de Saint-Flour XXVI - 1996 , 1997 .

[34]  E. Mammen,et al.  Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors , 1997 .

[35]  Arkadi Nemirovski,et al.  Adaptive de-noising of signals satisfying differential inequalities , 1997, IEEE Trans. Inf. Theory.

[36]  P. Massart,et al.  From Model Selection to Adaptive Estimation , 1997 .

[37]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[38]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[39]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[40]  I. Johnstone,et al.  Minimax risk overlp-balls forlp-error , 1994 .

[41]  A. Kneip Ordered Linear Smoothers , 1994 .

[42]  D. Donoho Statistical Estimation and Optimal Recovery , 1994 .

[43]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[44]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[45]  O. Lepskii,et al.  Asymptotically minimax adaptive estimation. II: Schemes without optimal adaptation: adaptive estimators , 1993 .

[46]  A. Tsybakov,et al.  Minimax theory of image reconstruction , 1993 .

[47]  A. Nemirovskii,et al.  On nonparametric estimation of functions satisfying differential inequalities , 1992 .

[48]  D. Donoho,et al.  Renormalization Exponents and Optimal Pointwise Rates of Convergence , 1992 .

[49]  O. Lepskii Asymptotically Minimax Adaptive Estimation. I: Upper Bounds. Optimally Adaptive Estimates , 1992 .

[50]  O. Lepskii On a Problem of Adaptive Estimation in Gaussian White Noise , 1991 .

[51]  Murray Rosenblatt,et al.  Stochastic Curve Estimation , 1991 .

[52]  W. Härdle Applied Nonparametric Regression , 1991 .

[53]  G. Wahba Spline Models for Observational Data , 1990 .

[54]  I. Ibragimov,et al.  On Nonparametric Estimation of the Value of a Linear Functional in Gaussian White Noise , 1985 .

[55]  $OL$ Distributions on Euclidean Spaces , 1984 .

[56]  Lucien Birgé Approximation dans les espaces métriques et théorie de l'estimation , 1983 .

[57]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[58]  O. V. Besov,et al.  Integral representations of functions and imbedding theorems , 1978 .

[59]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[60]  D. Politis,et al.  Statistical Estimation , 2022 .