Unpredictability and Computational Irreducibility

We explore several concepts for analyzing the intuitive notion of computational irreducibility and we propose a robust formal definition, first in the field of cellular automata and then in the general field of any computable function f from N to N. We prove that, through a robust definition of what means “to be unable to compute the n th step without having to follow the same path than simulating the automaton or to be unable to compute f(n) without having to compute f(i) for i = 1 to n–1”, this implies genuinely, as intuitively expected, that if the behavior of an object is computationally irreducible, no computation of its n th state can be faster than the simulation itself.

[1]  Jean-Paul Delahaye,et al.  Numerical evaluation of algorithmic complexity for short strings: A glance into the innermost structure of randomness , 2011, Appl. Math. Comput..

[2]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[3]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[4]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[5]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[6]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[7]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[8]  Niels Gregersen,et al.  From Complexity to Life: On The Emergence of Life and Meaning , 2002 .

[9]  Cristian S. Calude Information and Randomness: An Algorithmic Perspective , 1994 .

[10]  E. Ott Chaos in Dynamical Systems: Contents , 2002 .

[11]  Les systèmes complexes , 2006 .

[12]  D. Schnapper Les limites de la connaissance , 2012 .

[13]  Jean-Paul Delahaye,et al.  Image information content characterization and classification by physical complexity , 2010, ArXiv.

[14]  Patrick Suppes,et al.  Logic, Methodology and Philosophy of Science , 1963 .

[15]  Navot Israeli,et al.  Computational irreducibility and the predictability of complex physical systems. , 2003, Physical review letters.

[16]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[17]  C. Allen,et al.  Stanford Encyclopedia of Philosophy , 2011 .

[18]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[19]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[20]  Nihat Ay,et al.  Effective Complexity and Its Relation to Logical Depth , 2008, IEEE Transactions on Information Theory.

[21]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[22]  H. Schuster Deterministic chaos: An introduction , 1984 .

[23]  J. Delahaye Randomness, Unpredictability and Absence of Order: The Identification by the Theory of Recursivity of the Mathematical Notion of Random Sequence , 1993 .

[24]  H. Keisler,et al.  The Kleene Symposium , 1980 .

[25]  J. Delahaye Information, complexité et hasard , 1994 .

[26]  Hector Zenil,et al.  Empirical Encounters with Computational Irreducibility and Unpredictability , 2011, Minds and Machines.

[27]  W. Ebeling,et al.  From Instability to Intelligence. Complexity and Predictability in Nonlinear Dynamics , 1999 .

[28]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[29]  Cristian Claude,et al.  Information and Randomness: An Algorithmic Perspective , 1994 .

[30]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[31]  Oded Goldreich,et al.  Computational complexity: a conceptual perspective , 2008, SIGA.

[32]  Marcus Hutter,et al.  Algorithmic Information Theory , 1977, IBM J. Res. Dev..

[33]  Robin Gandy,et al.  Church's Thesis and Principles for Mechanisms , 1980 .

[34]  Joseph P. Zbilut,et al.  From Instability to Intelligence: Complexity and Predictability in Nonlinear Dynamics , 1997 .

[35]  Rolf Herken,et al.  The Universal Turing Machine: A Half-Century Survey , 1992 .

[36]  Luis Filipe Coelho Antunes,et al.  Depth as Randomness Deficiency , 2008, Theory of Computing Systems.

[37]  C. E. Puente,et al.  The Essence of Chaos , 1995 .

[38]  Peter G. Hinman Review: Piergiorgio Odifreddi, Classical Recursion Theory. The Theory of Functions and Sets of Natural Numbers , 1990 .

[39]  Philippe Moser A General Notion of Useful Information , 2008, CSP.

[40]  Gregory J. Chaitin,et al.  Exploring RANDOMNESS , 2001, Discrete Mathematics and Theoretical Computer Science.

[41]  J. Dubucs,et al.  Philosophy of probability , 1993 .

[42]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[43]  Charles H. Bennett Logical depth and physical complexity , 1988 .

[44]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[45]  Jean-Paul Delahaye,et al.  Image characterization and classification by physical complexity , 2010, Complex..

[46]  Wolfram,et al.  Undecidability and intractability in theoretical physics. , 1985, Physical review letters.