A survey of new laser and detector structures for 3-5 μm midinfrared spectral range

The paper presents an overview of semiconductor laser and detector structures for the Mid-Infrared wavelength range (3 - 5 μm). Recent progresses in new laser systems are described: intersubband InAs/AlSb quantum cascade lasers (QCLs), interband type-II "W" lasers, and interband quantum cascade lasers (ICLs). All these laser structures employing AlSb, InAs, GaSb and related alloys have the potentiality to reach the challenge of room temperature operation in continuous wave for modern applications. The description of detector structures is focused on interband transition systems based on bulk InAs0.9Sb0.1, type-III InAs/GaSb superlattices or InSb/GaSb quantum dots.

[1]  Y. Su,et al.  Characterization of the InAsSb/GaSb superlattices by Fourier transform infrared spectroscopy , 2003 .

[2]  Hooman Mohseni,et al.  Miniaturization: enabling technology for the new millennium , 2001, International Conference on Solid State Crystals.

[3]  Hideo Ohno,et al.  InAs/AlSb quantum cascade lasers operating at 10 μm , 2003 .

[4]  Jerry R. Meyer,et al.  Type‐II quantum‐well lasers for the mid‐wavelength infrared , 1995 .

[5]  C. Becker,et al.  InAs/AlSb quantum-cascade light-emitting devices in the 3–5 μm wavelength region , 2001 .

[6]  Carlo Sirtori,et al.  Short wavelength ( 3:4 m) quantum cascade laser based on strain-compensated InGaAs/AllnAs , 1998 .

[7]  A. Joullié New developments in mid-infrared Sb-based lasers , 1999 .

[8]  Ron Kaspi,et al.  Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs–GaSb type-II superlattices , 2001 .

[9]  Rui Q. Yang,et al.  Low-threshold interband cascade lasers with power efficiency exceeding 9% , 2000 .

[10]  Rui Q. Yang Infrared laser based on intersubband transitions in quantum wells , 1995 .

[11]  Rui Q. Yang,et al.  Type-II and type-I interband cascade lasers , 1996 .

[12]  M. McDonald,et al.  Low threshold PbEuSeTe/PbTe separate confinement buried heterostructure diode lasers , 1996 .

[13]  MULTIBAND FINITE ELEMENT MODELING OF WAVEFUNCTION-ENGINEERED ELECTRO-OPTICAL DEVICES , 1995 .

[14]  M. Razeghi,et al.  Optoelectronic devices based on III-V compound semiconductors which have made a major scientific and technological impact in the past 20 years , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  C. Grein,et al.  Mid-infrared InAs/GaInSb separate confinement heterostructure laser diode structures , 2001 .

[16]  Manijeh Razeghi,et al.  Novel Sb-based materials for uncooled infrared photodetector applications , 2000 .

[17]  Georgy G. Zegrya,et al.  Mechanism of suppression of Auger recombination processes in type-II heterostructures , 1995 .

[18]  Maurus Tacke Lead–salt lasers , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  A. R. Adams,et al.  Band-structure engineering for low-threshold high-efficiency semiconductor lasers , 1986 .

[20]  Y. Su,et al.  Normal-incidence intersubband and interband optical transitions in GaSb-InAs superlattices , 1995, IEEE Photonics Technology Letters.

[21]  Vincent Berger,et al.  Strategy for the design of a non-cryogenic quantum infrared detector , 2003 .

[22]  Yajun Wei,et al.  Quantum sensing using Type II InAs/GaSb superlattice for infrared detection , 2003, Microelectron. J..

[23]  Martin Walther,et al.  High performance InAs/Ga1-xInxSb superlattice infrared photodiodes , 1997 .

[24]  B. Ridley Quantum Processes in Semiconductors , 1982 .

[25]  GaAs–based quantum cascade lasers , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  Jamie D. Phillips,et al.  Evaluation of the fundamental properties of quantum dot infrared detectors , 2002 .

[27]  Manijeh Razeghi,et al.  Photoluminescence study of InAsSb/InAsSbP heterostructures grown by low‐pressure metalorganic chemical vapor deposition , 1996 .

[28]  Christopher L. Felix,et al.  Continuous-wave operation of λ=3.25 μm broadened-waveguide W quantum-well diode lasers up to T=195 K , 2000 .

[29]  Hooman Mohseni,et al.  Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices , 1998 .

[30]  Spatial separation of carriers in InAs–GaSb superlattices , 1981 .

[31]  Mattias Beck,et al.  Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature , 2001, Science.

[32]  F. Capasso,et al.  New frontiers in quantum cascade lasers and applications , 2000, IEEE Journal of Selected Topics in Quantum Electronics.