High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range
暂无分享,去创建一个
Kristijonas Vizbaras | Edgaras Dvinelis | Mindaugas Greibus | Augustinas Trinkūnas | Augustinas Vizbaras | Tomas Žukauskas | Mindaugas Kaušylas | Ieva Šimonytė | Ramūnas Songaila | A. Vizbaras | K. Vizbaras | I. Simonyte | Augustinas Trinkunas | Mindaugas Greibus | T. Žukauskas | Edgaras Dvinelis | Ramūnas Songaila | Mindaugas Kaušylas
[1] S. Arafin,et al. Low-Threshold Strained Quantum-Well GaSb-Based Lasers Emitting in the 2.5- to 2.7-$\mu$ m Wavelength Range , 2009, IEEE Photonics Technology Letters.
[2] Jerry R. Meyer,et al. Band parameters for III–V compound semiconductors and their alloys , 2001 .
[3] GaInAs/GaAsSb-based type-II micro-cavity LED with 2-3 μm light emission grown on InP substrate , 2013 .
[4] G. Eisenstein,et al. Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode , 1983, IEEE Journal of Quantum Electronics.
[5] R. Martinelli,et al. 2.3-2.7-μm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers , 1999, IEEE Photonics Technology Letters.
[6] Y. Chien,et al. Broadband 2.4 μm superluminescent GaInAsSb/AlGaAsSb quantum well diodes for optical sensing of biomolecules. , 2014, Semiconductor science and technology.
[7] Dietrich Marcuse,et al. Reflection loss of laser mode from tilted end mirror , 1989 .
[8] J. Olesberg,et al. Cascaded active regions in 2.4μm GaInAsSb light-emitting diodes for improved current efficiency , 2006 .
[9] Chenglu Lin,et al. Low threshold room-temperature continuous-wave operation of 2.24–3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers , 2004 .
[10] Up to 3 μm light emission on InP substrate using GaInAs/GaAsSb type-II quantum wells , 2011 .
[11] A. Haug,et al. Free-carrier absorption in semiconductor lasers , 1992 .
[12] Sadao Adachi,et al. Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2–4‐μm optoelectronic device applications , 1987 .