Abstract Interpretation of FIFO channels

We address the analysis and the verification of communicating systems, which are systems built from sequential processes communicating via unbounded FIFO channels. We adopt the Abstract Interpretation approach to this problem, by defining approximate representations of sets of configuration of FIFO channels. In this paper we restrict our attention to the case where processes are finite-state processes and the alphabet of exchanged messages is finite. We first focus on systems with only one queue, for which we propose an abstract lattice based on regular languages, and we then generalize our proposal to systems with several queues. In particular, we define for these systems two abstract lattices, which are resp. non-relational and relational abstract lattices. We use those lattices for computing an over-approximation of the reachability set of a CFSM. Our experimental evaluation shows that, for some protocols, we obtain results that are as good as those obtained by exact methods founded on acceleration techniques. \\ Nous nous interessons a l'analyse et a la verification de systemes communiquants, qui sont des systemes formes de processus sequentiels communiquant par des files de communication non bornees. Nous proposons de suivre l'approche de l'interpretation abstraite, en definissant des representations approchees pour les ensembles de configuration de files de communication. Dans le cadre de cet article, nous nous restreignons au cas ou les processus sont d'etat fini et l'alphabet des messages echanges est egalement fini. Nous etudions d'abord les systemes avec une seule file de communication, pour lesquels nous proposons un treillis abstrait fonde sur les langages reguliers, puis generalisons notre proposition aux systemes avec plusieurs files. En particulier nous definissons pour ces derniers deux treillis abstraits, le premier non-relationel et le second relationel, c'est-a-dire capable de representer des proprietes liant deux files de communication differentes. Nous utiliserons ces treillis pour calculer une sur-approximation de l'ensemble d'atteignabilite d'un CFSM. Notre evaluation experimentale montre que nous obtenons, sur certains protocoles, des resultats aussi bons que ceux obtenus par des methodes exactes fondees sur des techniques d'acceleration.

[1]  Parosh Aziz Abdulla,et al.  Symbolic Verification of Lossy Channel Systems: Application to the Bounded Retransmission Protocol , 1999, TACAS.

[2]  Alain Finkel,et al.  Well-abstracted transition systems: application to FIFO automata , 2003, Inf. Comput..

[3]  Parosh Aziz Abdulla,et al.  On-the-Fly Analysis of Systems with Unbounded, Lossy FIFO Channels , 1998, CAV.

[4]  Patrice Godefroid,et al.  Symbolic Verification of Communication Protocols with Infinite State Spaces using QDDs , 1999, Formal Methods Syst. Des..

[5]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[6]  Patrice Godefroid,et al.  Symbolic Verification of Communication Protocols with Infinite State Spaces Using QDDs (Extended Abstract) , 1996, CAV.

[7]  Nicolas Halbwachs,et al.  Automatic discovery of linear restraints among variables of a program , 1978, POPL.

[8]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Presburger Arithmetic Constraints (Extended Abstract) , 1995, SAS.

[9]  Gregor von Bochmann,et al.  Finite State Description of Communication Protocols , 1978, Comput. Networks.

[10]  Nicolas Halbwachs,et al.  Automatic verification of parameterized linear networks of processes , 1997, POPL '97.

[11]  Kenneth J. Turner,et al.  Using Formal Description Techniques: An Introduction to Estelle, Lotos, and SDL , 1993 .

[12]  Jérôme Feret,et al.  Abstract Interpretation-Based Static Analysis of Mobile Ambients , 2001, SAS.

[13]  Alain Finkel,et al.  Unreliable Channels are Easier to Verify Than Perfect Channels , 1996, Inf. Comput..

[14]  Laure Petrucci,et al.  FAST: Fast Acceleration of Symbolikc Transition Systems , 2003, CAV.

[15]  Ahmed Bouajjani,et al.  Abstract Regular Model Checking , 2004, CAV.

[16]  Pierre Wolper,et al.  The Power of QDDs (Extended Abstract) , 1997, SAS.

[17]  Marcus Nilsson,et al.  Regular Model Checking , 2000, CAV.

[18]  F. Bourdoncle Semantiques des langages imperatifs d'ordre superieur et interpretation abstraite , 1992 .

[19]  S. Purushothaman Iyer,et al.  Data flow analysis of communicating finite state machines , 1991, TOPL.

[20]  Daniel Brand,et al.  On Communicating Finite-State Machines , 1983, JACM.

[21]  Ahmed Bouajjani,et al.  Symbolic Reachability Analysis of FIFO-Channel Systems with Nonregular Sets of Configurations , 1999, Theor. Comput. Sci..