Multirobot Object Localization: A Fuzzy Fusion Approach

In this paper, we address the problem of fusing information about object positions in multirobot systems. Our approach is novel in two main respects. First, it addresses the multirobot object localization problem using fuzzy logic. It uses fuzzy sets to represent uncertain position information and fuzzy intersection to fuse this information. The result of this fusion is a consensus among sources, as opposed to the compromise achieved by many other approaches. Second, our method fully propagates self-localization uncertainty to object-position estimates. We evaluate our method using systematic experiments, which describe an input-error landscape for the performance of our approach. This landscape characterizes how well our method performs when faced with various types and amounts of input errors.

[1]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[2]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[3]  Alessandro Saffiotti,et al.  Robust Multi-robot Object Localization Using Fuzzy Logic , 2004, RoboCup.

[4]  Li-Wei Fong,et al.  Distributed data fusion algorithms for tracking a maneuvering target , 2007, 2007 10th International Conference on Information Fusion.

[5]  H. Prade,et al.  Possibilistic logic , 1994 .

[6]  Weihong Zhang,et al.  A Probabilistic Approach to Tracking Moving Targets With Distributed Sensors , 2007, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[7]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[8]  Alessandro Saffiotti,et al.  Team Sweden , 2001, RoboCup.

[9]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[10]  Alessandro Saffiotti,et al.  Robust color segmentation for the RoboCup domain , 2002, Object recognition supported by user interaction for service robots.

[11]  Salem Benferhat,et al.  Reasoning with multiple-source information in a possibilistic logic framework , 2006, Inf. Fusion.

[12]  Alessandro Saffiotti,et al.  Fuzzy landmark-based localization for a legged robot , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[13]  S. Weber A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms , 1983 .

[14]  Luca Iocchi,et al.  Improving tracking by integrating reliability of multiple sources , 2008, 2008 11th International Conference on Information Fusion.

[15]  Christine Zarges,et al.  Cooperative Visual Tracking in a Team of Autonomous Mobile Robots , 2006, RoboCup.

[16]  Jack Bresenham,et al.  Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..

[17]  Alessandro Saffiotti,et al.  Fuzzy Self-Localization Using Natural Features in the Four-Legged League , 2004, RoboCup.

[18]  Alexander Ferrein,et al.  Comparing Sensor Fusion Techniques for Ball Position Estimation , 2005, RoboCup.

[19]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[20]  Hugh Durrant-Whyte,et al.  A Beginners Guide to Decentralised Data Fusion , 2006 .

[21]  Bernhard Nebel,et al.  Cooperative sensing in dynamic environments , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[22]  Daniel Göhring,et al.  Cooperative Object Localization Using Line-Based Percept Communication , 2008, RoboCup.

[23]  Alessandro Saffiotti,et al.  Active perceptual anchoring of robot behavior in a dynamic environment , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[24]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[25]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[26]  Isabelle Bloch,et al.  Fuzzy mathematical morphologies: A comparative study , 1995, Pattern Recognit..

[27]  Thia Kirubarajan,et al.  Multisensor particle filter cloud fusion for multitarget tracking , 2008, 2008 11th International Conference on Information Fusion.

[28]  Alessandro Saffiotti,et al.  The uses of fuzzy logic in autonomous robot navigation , 1997, Soft Comput..

[29]  Ying Wu,et al.  Distributed data association and filtering for multiple target tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Mohammad Molhim,et al.  Fuzzy dynamic localization for mobile robots , 2004, Fuzzy Sets Syst..

[31]  P. Lima,et al.  Bayesian Sensor Fusion for Cooperative Object Localization and World Modeling , 2003 .

[32]  Hans-Dieter Burkhard,et al.  CooperativeWorld Modeling in Dynamic Multi-Robot Environments , 2007, Fundam. Informaticae.

[33]  Michael Beetz,et al.  Cooperative probabilistic state estimation for vision-based autonomous mobile robots , 2002, IEEE Trans. Robotics Autom..

[34]  Dov M. Gabbay,et al.  Handbook of Logic in Artificial Intelligence and Logic Programming: Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning , 1994 .

[35]  Thorsten Schmitt,et al.  From Multiple Images to a Consistent View , 2000, RoboCup.

[36]  M. Fernandez,et al.  A failure detection and isolation algorithm for a decentralised multisensor system , 1994, Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems.

[37]  Hugh Durrant-Whyte,et al.  Integration, coordination, and control of multi-sensor robot systems , 1987 .

[38]  S.S. Blackman,et al.  Multiple hypothesis tracking for multiple target tracking , 2004, IEEE Aerospace and Electronic Systems Magazine.

[39]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[40]  Isabelle Bloch Information combination operators for data fusion: a comparative review with classification , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[41]  Jens-Steffen Gutmann,et al.  Markov-Kalman localization for mobile robots , 2002, Object recognition supported by user interaction for service robots.

[42]  Tucker R. Balch,et al.  Merging Gaussian Distributions for Object Localization in Multi-robot Systems , 2000, ISER.

[43]  Dieter Fox,et al.  Bayesian Filtering for Location Estimation , 2003, IEEE Pervasive Comput..